cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A060763 Number of distinct differences between consecutive divisors (ordered by increasing magnitude) of n which are not also divisors of n.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 0, 2, 1, 1, 0, 1, 1, 2, 0, 1, 0, 1, 0, 3, 1, 1, 0, 2, 1, 3, 1, 1, 1, 1, 0, 3, 1, 3, 0, 1, 1, 3, 1, 1, 0, 1, 1, 4, 1, 1, 0, 2, 2, 3, 1, 1, 0, 3, 2, 3, 1, 1, 0, 1, 1, 4, 0, 3, 1, 1, 1, 3, 3, 1, 0, 1, 1, 3, 1, 3, 1, 1, 2, 4, 1, 1, 1, 3, 1, 3, 1, 1, 1, 2, 1, 3, 1, 3, 0, 1, 2, 4, 0, 1, 1, 1, 1, 5
Offset: 1

Views

Author

Labos Elemer, Apr 24 2001

Keywords

Examples

			For n=70, divisors={1,2,5,7,10,14,35,70}; differences={1,3,2,3,4,21,35}; the differences {3,4,21} are not divisors, so a(70)=3.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local D,L;
      D:= numtheory:-divisors(n);
      L:= sort(convert(D,list));
      nops(convert(L[2..-1]-L[1..-2],set) minus D);
    end proc:
    map(f, [$1..200]); # Robert Israel, Jul 03 2017
  • Mathematica
    a[n_] := Length[Complement[Drop[d=Divisors[n], 1]-Drop[d, -1], d]]
  • PARI
    a(n) = my(d=divisors(n)); #select(x->(setsearch(d, x)==0), vecsort(vector(#d-1, k, d[k+1] - d[k]),,8)); \\ Michel Marcus, Jul 04 2017

Extensions

Edited by Dean Hickerson, Jan 22 2002

A060741 Number of divisors of 2n which are also differences between consecutive divisors of 2n (ordered by size).

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 4, 3, 4, 2, 4, 2, 4, 4, 5, 2, 5, 2, 4, 4, 4, 2, 5, 3, 4, 4, 4, 2, 7, 2, 6, 4, 4, 3, 6, 2, 4, 4, 5, 2, 5, 2, 6, 6, 4, 2, 6, 3, 6, 4, 6, 2, 7, 4, 4, 4, 4, 2, 9, 2, 4, 5, 7, 4, 5, 2, 6, 4, 6, 2, 8, 2, 4, 6, 6, 2, 6, 2, 6, 5, 4, 2, 8, 4, 4, 4, 6, 2, 9, 2, 6, 4, 4, 4, 7, 2, 6, 6, 6, 2, 6, 2, 6, 8
Offset: 1

Views

Author

Labos Elemer, Apr 23 2001

Keywords

Comments

For odd numbers the intersection is empty.

Examples

			For n=35, 2n=70; divisors={1,2,5,7,10,14,35,70}; differences={1,3,2,3,4,21,35}; intersection={1,2,35}, so a(35)=3.
		

Crossrefs

Programs

  • Mathematica
    a[n_ ] := Length[Intersection[Drop[d=Divisors[2n], 1]-Drop[d, -1], d]]
    Table[Length[Intersection[Divisors[2n],Differences[Divisors[2n]]]],{n,110}] (* Harvey P. Dale, Nov 22 2015 *)
  • PARI
    A060764(n) = { my(divs=divisors(n), diffs=vecsort(vector(#divs-1,i,divs[i+1]-divs[i]), ,8), c=#divs); for(i=1,#diffs,if(!(n%diffs[i]),c--)); (c); };
    A060741(n) = (numdiv(2*n) - A060764(2*n)); \\ Antti Karttunen, Sep 21 2018

Formula

a(n) = A000005(2n) - A060764(2n).

Extensions

Edited by Dean Hickerson, Jan 22 2002

A360118 Number of differences (not all necessarily distinct) between consecutive divisors of n which are not also divisors of n.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 0, 2, 1, 1, 0, 1, 1, 3, 0, 1, 0, 1, 0, 3, 1, 1, 0, 2, 1, 3, 1, 1, 1, 1, 0, 3, 1, 3, 0, 1, 1, 3, 1, 1, 0, 1, 1, 5, 1, 1, 0, 2, 2, 3, 1, 1, 0, 3, 2, 3, 1, 1, 0, 1, 1, 5, 0, 3, 1, 1, 1, 3, 4, 1, 0, 1, 1, 5, 1, 3, 1, 1, 2, 4, 1, 1, 1, 3, 1, 3, 1, 1, 1, 3, 1, 3, 1, 3, 0, 1, 2, 5, 0, 1, 1, 1, 1, 7
Offset: 1

Views

Author

Antti Karttunen, Feb 20 2023

Keywords

Examples

			For n=70, its divisors are {1, 2, 5, 7, 10, 14, 35, 70} and their first differences are {1, 3, 2, 3, 4, 21, 35}, of which the differences {3, 3, 4, 21} are not divisors, so a(70) = 4. Note that in contrast to A060763, here the difference 3 is counted twice because there are two copies of it among the differences.
		

Crossrefs

Programs

  • PARI
    A360118(n) = { my(d=divisors(n), erot = vector(#d-1, k, d[k+1] - d[k])); sum(i=1,#erot,!!(n%erot[i])); };

Formula

For all n >= 1, A060763(n) <= a(n) < A060764(n).
a(n) = A060764(n) - A360119(n).

A360119 Number of divisors of n which are not also differences between consecutive divisors, minus the number of differences between consecutive divisors of n which are not also divisors of n. Here the differences are counted with repetition if they occur more than once.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 4, 1, 1, 1, 3, 1, 4, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 4, 1, 2, 1, 1, 1, 5, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 6, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 6, 1, 1, 1, 3, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Feb 20 2023

Keywords

Comments

Because the algorithm for computing this sequence (see the PARI program) starts with s set to the number of divisors, and s is decremented at most once on each iteration in the loop over the first differences of the divisors, and because there is one less difference than there are divisors, it implies that a(n) >= 1 for all n.
Note that if a(n) = 1, then A088722(n) = 0, but not vice versa, i.e., the positions of 1's in this sequence is just a subsequence of A088725. See A360129 for the exceptions.

Crossrefs

Programs

  • PARI
    A360119(n) = { my(d=divisors(n), erot=vecsort(vector(#d-1, k, d[k+1] - d[k])), s=#d); for(i=1,#erot,if(n%erot[i], s--, if(1==i || erot[i]!=erot[i-1], s--))); (s); };

Formula

a(n) = A060764(n) - A360118(n).
a(n) <= A000005(n).

A060700 "Anomalous" numbers k such that for even numbers 2k, gcd(2k, lcm(dd(2k)))=2k and not k, where dd(2k) is the first difference set of divisors of 2k.

Original entry on oeis.org

15, 30, 35, 45, 63, 70, 75, 77, 91, 99, 105, 117, 126, 135, 140, 143, 150, 153, 154, 165, 175, 182, 187, 189, 195, 198, 209, 221, 225, 231, 234, 245, 247, 252, 255, 273, 280, 285, 286, 297, 299, 306, 308, 315, 323, 325, 330, 345, 350, 351, 357, 364, 374, 375
Offset: 1

Views

Author

Labos Elemer, Apr 25 2001

Keywords

Examples

			63 is here because for 126 = 2*63, lcm(dd(126)) = lcm(1, 1, 3, 1, 2, 5, 4, 3, 21, 21, 63) = 1260, so gcd(126, lcm(dd(126))) = gcd(126, 1260) = 126.
		

Crossrefs

Programs

  • PARI
    f(n) = {my(d = divisors(n), dd = vector(#d-1, k, d[k+1] - d[k])); gcd(n, lcm(dd));}
    isok(n) = (f(2*n) == 2*n); \\ Michel Marcus, Mar 29 2018
Showing 1-5 of 5 results.