A060746 Absolute value of numerator of non-Euler-constant term of Laurent expansion of Gamma function at s = -n.
0, 1, 3, 11, 25, 137, 49, 121, 761, 7129, 7381, 83711, 86021, 1145993, 1171733, 1195757, 2436559, 42142223, 14274301, 275295799, 11167027, 18858053, 6364399, 444316699, 269564591, 34052522467, 34395742267, 312536252003
Offset: 0
Keywords
Examples
series(GAMMA(s), s=-4,1 ) = series(1/24*(s+4)^(-1)+(25/288-1/24*gamma)+O((s+4)),s=-4,1). Hence a(4)=25 series(GAMMA(s), s=-5,1 ) = series(-1/120*(s+5)^(-1)+(-137/7200+1/120*gamma)+O((s+5)),s=-5,1). Hence a(5)=137.
Formula
Conjecture: a(n) = lcm(Wolstenholme(n), n!)/n!, cf. A001008. - Vladeta Jovovic, May 20 2004
Conjecture: a(n) = numerator(harmonic(n)/(n-1)!) for n >= 1. - Peter Luschny, May 13 2023
Comments