cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A093818 a(n) = gcd(A001008(n), n!).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 3, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 11, 1, 1, 1, 11, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Vladeta Jovovic, May 20 2004

Keywords

Comments

Conjecture: every odd prime occurs as a term in the sequence.
Observation: Terms other than 1 are rare. Of the terms a(1) .. a(29524), only 187 are larger than one. Among these 187 terms, the following 50 distinct values occur: 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 227, 257, 269, 509, 863, 919, 1049, 1331, 9409, 11881. Of these, all other are primes except 121 = 11*11, 1331 = 11*11*11, 9409 = 97*97 and 11881 = 109*109. - Antti Karttunen, Aug 28 2017

Crossrefs

Programs

Extensions

More terms from David Wasserman, Apr 20 2007
Name edited (A001008 substituted for "Wolstenholme") by Antti Karttunen, Aug 28 2017

A377400 Decimal expansion of e*(gamma - Ei(-1))/2.

Original entry on oeis.org

1, 0, 8, 2, 6, 9, 1, 1, 0, 7, 6, 6, 3, 4, 6, 8, 1, 7, 9, 7, 1, 0, 4, 9, 3, 1, 7, 4, 2, 4, 6, 2, 1, 5, 2, 8, 4, 1, 9, 0, 7, 1, 0, 3, 8, 3, 8, 7, 0, 7, 2, 1, 8, 4, 5, 1, 1, 5, 0, 6, 9, 5, 8, 5, 9, 4, 7, 4, 7, 1, 2, 1, 2, 8, 9, 8, 8, 9, 9, 3, 5, 8, 9, 8, 8, 4, 6, 3, 0, 1, 7, 5, 7, 0, 7, 7, 8, 3, 7, 8
Offset: 1

Views

Author

Stefano Spezia, Oct 27 2024

Keywords

Examples

			1.08269110766346817971049317424621528419071038...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[E(EulerGamma-ExpIntegralEi[-1])/2,10,100][[1]]

Formula

Equals Sum_{n>=1} (1/n!)*Sum_{k=1..n} 1/(2*k) (see Shamos).
Equals A347952 / 2.

A377401 a(n) = denominator((1/n!)*Sum_{k=1..n} 1/(2*k)).

Original entry on oeis.org

1, 2, 8, 72, 576, 14400, 28800, 470400, 22579200, 1828915200, 18289152000, 2212987392000, 26555848704000, 4487938430976000, 62831138033664000, 942467070504960000, 30158946256158720000, 8715935468029870080000, 52295612808179220480000, 18878716223752698593280000
Offset: 0

Views

Author

Stefano Spezia, Oct 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=Denominator[Sum[1/(2*k),{k,n}]/n!]; Array[a,20,0]
  • PARI
    a(n) = denominator(sum(k=1, n, 1/(2*k))/n!); \\ Michel Marcus, Oct 29 2024

Formula

Conjecture: numerator((1/n!)*Sum_{k=1..n} 1/(2*k)) = A060746(n).
Showing 1-3 of 3 results.