A060778 a(n) = gcd(tau(n+1), tau(n)), where tau = A000005.
1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 4, 1, 1, 2, 2, 2, 2, 4, 2, 2, 1, 1, 4, 2, 2, 2, 2, 2, 2, 4, 4, 1, 1, 2, 4, 4, 2, 2, 2, 2, 6, 2, 2, 2, 1, 3, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 2, 1, 1, 4, 2, 2, 2, 4, 2, 2, 2, 2, 2, 6, 2, 4, 2, 2, 5, 1, 2, 2, 4, 4, 4, 4, 2, 2, 4, 2, 2, 4, 4, 4, 2, 2, 6, 3, 1, 2, 2, 2, 8, 4
Offset: 1
Keywords
Links
- Harry J. Smith, Table of n, a(n) for n=1..1000
Programs
-
Mathematica
GCD@@@Partition[DivisorSigma[0,Range[110]],2,1] (* Harvey P. Dale, May 27 2014 *)
-
PARI
a(n) = gcd(numdiv(n), numdiv(n+1)); \\ Michel Marcus, Jan 12 2018
-
Python
from math import gcd from sympy import divisor_count def A060778(n): return gcd(divisor_count(n+1),divisor_count(n)) # Chai Wah Wu, Aug 12 2023