cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060803 a(n) = Sum_{k=0..n} 2^(2^k).

Original entry on oeis.org

2, 6, 22, 278, 65814, 4295033110, 18446744078004584726, 340282366920938463481821351509772796182, 115792089237316195423570985008687907853610267032561502502939405359422902436118
Offset: 0

Views

Author

Varol Akman (akman(AT)cs.bilkent.edu.tr), Apr 28 2001

Keywords

Comments

Partial sums of A001146.
Number of Boolean functions with up to n arguments. - Paul Tarau (paul.tarau(AT)gmail.com), Jun 06 2008

Examples

			a(3) = 278 because a(3) = 2^2^0 + 2^2^1 + 2^2^2 + 2^2^3 = 2 + 4 + 16 + 256.
		

Crossrefs

Programs

  • Haskell
    -- code generating the infinite sequence:
    scanl (+) 2 (map (\x->2^2^x) [1..]) - Paul Tarau (paul.tarau(AT)gmail.com), Jun 06 2008
    
  • Mathematica
    Accumulate[2^(2^Range[0,10])] (* Harvey P. Dale, Sep 25 2023 *)
  • PARI
    { for (n=0, 11, write("b060803.txt", n, " ", sum(k=0, n, 2^(2^k))); ) } \\ Harry J. Smith, Jul 12 2009

Formula

a(0) = 2 and a(n) - a(n-1) = 2^2^n, n > 0.

Extensions

More terms from Benoit Cloitre, May 13 2002
Edited by N. J. A. Sloane, Jun 07 2008