cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060821 Triangle read by rows. T(n, k) are the coefficients of the Hermite polynomial of order n, for 0 <= k <= n.

Original entry on oeis.org

1, 0, 2, -2, 0, 4, 0, -12, 0, 8, 12, 0, -48, 0, 16, 0, 120, 0, -160, 0, 32, -120, 0, 720, 0, -480, 0, 64, 0, -1680, 0, 3360, 0, -1344, 0, 128, 1680, 0, -13440, 0, 13440, 0, -3584, 0, 256, 0, 30240, 0, -80640, 0, 48384, 0, -9216, 0, 512, -30240, 0, 302400, 0, -403200, 0, 161280, 0, -23040, 0, 1024
Offset: 0

Views

Author

Vladeta Jovovic, Apr 30 2001

Keywords

Comments

Exponential Riordan array [exp(-x^2), 2x]. - Paul Barry, Jan 22 2009

Examples

			[1], [0, 2], [ -2, 0, 4], [0, -12, 0, 8], [12, 0, -48, 0, 16], [0, 120, 0, -160, 0, 32], ... .
Thus H_0(x) = 1, H_1(x) = 2*x, H_2(x) = -2 + 4*x^2, H_3(x) = -12*x + 8*x^3, H_4(x) = 12 - 48*x^2 + 16*x^4, ...
Triangle starts:
     1;
     0,     2;
    -2,     0,      4;
     0,   -12,      0,      8;
    12,     0,    -48,      0,      16;
     0,   120,      0,   -160,       0,    32;
  -120,     0,    720,      0,    -480,     0,     64;
     0, -1680,      0,   3360,       0, -1344,      0,   128;
  1680,     0, -13440,      0,   13440,     0,  -3584,     0,    256;
     0, 30240,      0, -80640,       0, 48384,      0, -9216,      0, 512;
-30240,     0, 302400,      0, -403200,     0, 161280,     0, -23040,   0, 1024;
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 24, equations 24:4:1 - 24:4:8 at page 219.

Crossrefs

Cf. A001814, A001816, A000321, A062267 (row sums).
Without initial zeros, same as A059343.

Programs

  • Maple
    with(orthopoly):for n from 0 to 10 do H(n,x):od;
    T := proc(n,m) if n-m >= 0 and n-m mod 2 = 0 then ((-1)^((n-m)/2))*(2^m)*n!/(m!*((n-m)/2)!) else 0 fi; end;
    # Alternative:
    T := proc(n,k) option remember; if k > n then 0 elif n = k then 2^n else
    (T(n, k+2)*(k+2)*(k+1))/(2*(k-n)) fi end:
    seq(print(seq(T(n, k), k = 0..n)), n = 0..10); # Peter Luschny, Jan 08 2023
  • Mathematica
    Flatten[ Table[ CoefficientList[ HermiteH[n, x], x], {n, 0, 10}]] (* Jean-François Alcover, Jan 18 2012 *)
  • PARI
    for(n=0,9,v=Vec(polhermite(n));forstep(i=n+1,1,-1,print1(v[i]", "))) \\ Charles R Greathouse IV, Jun 20 2012
    
  • Python
    from sympy import hermite, Poly, symbols
    x = symbols('x')
    def a(n): return Poly(hermite(n, x), x).all_coeffs()[::-1]
    for n in range(21): print(a(n)) # Indranil Ghosh, May 26 2017
    
  • Python
    def Trow(n: int) -> list[int]:
        row: list[int] = [0] * (n + 1); row[n] = 2**n
        for k in range(n - 2, -1, -2):
            row[k] = -(row[k + 2] * (k + 2) * (k + 1)) // (2 * (n - k))
        return row  # Peter Luschny, Jan 08 2023

Formula

T(n, k) = ((-1)^((n-k)/2))*(2^k)*n!/(k!*((n-k)/2)!) if n-k is even and >= 0, else 0.
E.g.f.: exp(-y^2 + 2*y*x).
From Paul Barry, Aug 28 2005: (Start)
T(n, k) = n!/(k!*2^((n-k)/2)((n-k)/2)!)2^((n+k)/2)cos(Pi*(n-k)/2)(1 + (-1)^(n+k))/2;
T(n, k) = A001498((n+k)/2, (n-k)/2)*cos(Pi*(n-k)/2)2^((n+k)/2)(1 + (-1)^(n+k))/2.
(End)
Row sums: A062267. - Derek Orr, Mar 12 2015
a(n*(n+3)/2) = a(A000096(n)) = 2^n. - Derek Orr, Mar 12 2015
Recurrence for fixed n: T(n, k) = -(k+2)*(k+1)/(2*(n-k)) * T(n, k+2), starting with T(n, n) = 2^n. - Ralf Stephan, Mar 26 2016
The m-th row consecutive nonzero entries in increasing order are (-1)^(c/2)*(c+b)!/(c/2)!b!*2^b with c = m, m-2, ..., 0 and b = m-c if m is even and with c = m-1, m-3, ..., 0 with b = m-c if m is odd. For the 10th row starting at a(55) the 6 consecutive nonzero entries in order are -30240,302400,-403200,161280,-23040,1024 given by c = 10,8,6,4,2,0 and b = 0,2,4,6,8,10. - Richard Turk, Aug 20 2017