cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060845 Largest prime < a nontrivial power of a prime.

Original entry on oeis.org

3, 7, 7, 13, 23, 23, 31, 47, 61, 79, 113, 113, 127, 167, 241, 251, 283, 337, 359, 509, 523, 619, 727, 839, 953, 1021, 1327, 1367, 1669, 1847, 2039, 2179, 2179, 2207, 2399, 2803, 3121, 3469, 3719, 4093, 4483, 4909, 5039, 5323, 6229, 6553, 6857, 6883, 7919
Offset: 1

Views

Author

Labos Elemer, May 03 2001

Keywords

Examples

			78125=5^7 follows 78121
		

Crossrefs

Programs

  • Mathematica
    Take[NextPrime[#,-1]&/@Union[Flatten[Table[Prime[p]^n,{n,2,20},{p,25}]]], 50] (* Harvey P. Dale, Mar 26 2012 *)
  • PARI
    { m=1; for (n=1, 1000, m++; while(sigma(m)*eulerphi(m)*(1 - isprime(m)) <= (m - 1)^2, m++); write("b060845.txt", n, " ", precprime(m - 1)); ) } \\ Harry J. Smith, Jul 19 2009
    
  • Python
    from sympy import primepi, integer_nthroot, prevprime
    def A060845(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-sum(primepi(integer_nthroot(x,k)[0]) for k in range(2,x.bit_length())))
        return prevprime(bisection(f,n,n)) # Chai Wah Wu, Sep 15 2024

Formula

a(n) = prevprime[A025475(n)] = A007917[A025475(n)] = Max{p| p < A025475(n)}