A060870 Number of n X n matrices over GF(5) with rank 1.
4, 144, 3844, 97344, 2439844, 61027344, 1525839844, 38146777344, 953673339844, 23841853027344, 596046423339844, 14901161071777344, 372529029235839844, 9313225743103027344, 232830643638610839844, 5820766091270446777344, 145519152283287048339844, 3637978807089805603027344
Offset: 1
Examples
a(2) = 144 because there are 145 (the second element in sequence A060720) singular 2 X 2 matrices over GF(5), that have rank <= 1 of which only the zero matrix has rank zero so a(2) = 145 - 1 = 144.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..200
- Index entries for linear recurrences with constant coefficients, signature (31,-155,125).
Crossrefs
Cf. A060720.
Programs
-
Mathematica
Table[(5^n-1)^2/4,{n,20}] (* or *) LinearRecurrence[{31,-155,125},{4,144,3844},20] (* Harvey P. Dale, Dec 06 2014 *)
-
PARI
a(n) = { (5^n - 1)^2 / 4 } \\ Harry J. Smith, Jul 13 2009
Formula
a(n) = 1/4 * (5^n - 1)^2.
G.f.: -4*x*(5*x+1) / ((x-1)*(5*x-1)*(25*x-1)). [Colin Barker, Dec 23 2012]
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), May 07 2001