cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A060879 Intrinsic 9-palindromes: n is an intrinsic k-palindrome if it is a k-digit palindrome in some base.

Original entry on oeis.org

257, 273, 297, 313, 325, 341, 365, 381, 387, 403, 427, 443, 455, 471, 495, 511, 6562, 6643, 6724, 6832, 6913, 6994, 7102, 7183, 7264, 7300, 7381, 7462, 7570, 7651, 7732, 7840, 7921, 8002, 8038, 8119, 8200, 8308, 8389, 8470, 8578, 8659
Offset: 1

Views

Author

Harvey P. Dale, May 05 2001

Keywords

Comments

All numbers are intrinsic 1- and (for n>2) 2-palindromes, almost all numbers are intrinsic 3-palindromes and very few numbers are intrinsic k-palindromes for k >= 4. - Franklin T. Adams-Watters, Jul 29 2011

Crossrefs

A060875 Intrinsic 5-palindromes: n is an intrinsic k-palindrome if it is a k-digit palindrome in some base.

Original entry on oeis.org

17, 21, 27, 31, 82, 91, 100, 112, 121, 130, 142, 151, 160, 164, 173, 182, 194, 203, 212, 224, 233, 242, 257, 273, 289, 305, 325, 341, 357, 373, 393, 409, 425, 441, 461, 477, 493, 509, 514, 530, 546, 562, 582, 598, 614, 626, 630, 650, 651, 666
Offset: 1

Views

Author

Harvey P. Dale, May 05 2001

Keywords

Comments

All numbers are intrinsic 1- and 2-palindromes, almost all numbers are intrinsic 3-palindromes and very few numbers are intrinsic k-palindromes for k >= 4.

Crossrefs

A060876 Intrinsic 6-palindromes: n is an intrinsic k-palindrome if it is a k-digit palindrome in some base.

Original entry on oeis.org

33, 45, 51, 63, 244, 280, 316, 328, 364, 400, 412, 448, 484, 488, 524, 560, 572, 608, 644, 656, 692, 728, 1025, 1105, 1185, 1265, 1285, 1365, 1445, 1525, 1545, 1625, 1705, 1785, 1805, 1885, 1965, 2045, 2050, 2130, 2210, 2290, 2310, 2390
Offset: 1

Views

Author

Harvey P. Dale, May 05 2001

Keywords

Comments

All numbers are intrinsic 1- and 2-palindromes, almost all numbers are intrinsic 3-palindromes and very few numbers are intrinsic k-palindromes for k >= 4.

Crossrefs

A060878 Intrinsic 8-palindromes: n is an intrinsic k-palindrome if it is a k-digit palindrome in some base.

Original entry on oeis.org

129, 153, 165, 189, 195, 219, 231, 255, 2188, 2296, 2404, 2440, 2548, 2656, 2692, 2800, 2908, 2920, 3028, 3136, 3172, 3280, 3388, 3424, 3532, 3640, 3652, 3760, 3868, 3904, 4012, 4120, 4156, 4264, 4372, 4376, 4484, 4592, 4628, 4736, 4844
Offset: 1

Views

Author

Harvey P. Dale, May 05 2001

Keywords

Comments

All numbers are intrinsic 1- and 2-palindromes, almost all numbers are intrinsic 3-palindromes and very few numbers are intrinsic k-palindromes for k >= 4.

Crossrefs

A100563 Number of bases less than sqrt(n) in which n is a palindrome.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 2, 0, 0, 1, 2, 0, 1, 0, 1, 2, 1, 1, 1, 0, 2, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 0, 0, 1, 1, 2, 2, 0, 0, 2, 1, 2, 0, 1, 0, 1, 1, 2, 1, 3, 0, 2, 1, 0, 0, 1, 1, 2, 1, 0, 0, 0, 2, 0, 2, 1, 2, 1, 0, 3, 1, 0, 1, 1, 0, 2, 2, 2, 0, 0, 0, 1, 2, 1, 3, 1, 0, 0, 2, 2
Offset: 1

Views

Author

Gordon Hamilton, Nov 29 2004

Keywords

Comments

Is there a number m such that a(n) > 0 for all n > m? I call the set of numbers for which a(n)=0 "unkempt" for refusing to use a mirror in any base. Is there an infinite number of unkempt numbers? a(n) can be arbitrarily large.
The sequence A123586 gives the values of n where a(n)=0. - Robert G. Wilson v, Nov 01 2014
Is there a closed-form formula for this function? - Robert G. Wilson v, Nov 01 2014
From Robert G. Wilson v, Nov 26 2014: (Start)
The first occurrence, beginning at 0, of n is: 1, 5, 17, 65, 121, 562, 1432, 1477, 4369, 36582, 35101, 86677, 83161, 360361, 291721, 720721, 887041, 1496881, 1670761, 3931201, 3341521, 5654881, 7207201, 7761601,...
Positions where a(n)=k:
k = 0: A123586;
k = 1: 5, 7, 9, 10, 13, 15, 16, 20, 23, 25, 27, 28, 29, 33, 34, 36, 37, 38, 40, ...;
k = 2: 17, 21, 26, 31, 46, 51, 52, 55, 57, 63, 67, 73, 78, 80, 82, 91, 92, 93, 98, ...;
k = 3: 65, 85, 100, 130, 154, 164, 170, 178, 191, 195, 203, 209, 242, 282, 292, ...;
k = 4: 121, 235, 255, 257, 273, 300, 325, 341, 343, 373, 400, 495, 601, 610, 626, 666, ...;
k = 5: 562, 676, 771, 819, 1009, 1111, 1220, 1333, 1365, 1441, 1543, 1978, 1981, 2000, ...;
k = 6: 1432, 2380, 2666, 2925, 3280, 4035, 4095, 4161, 4225, 4401, 4525, 4561, 4681, ...;
k = 7: 1477, 4097, 4591, 7141, 7993, 8191, 9640, 10081, 10297, 10626, 10858, 11761, ...; etc.
(End)

Examples

			100 is a palindrome in bases 3, 7 and 9, so a(100) = 3.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Module[{p}, Table[ p = IntegerDigits[n, b]; If[p == Reverse@ p, {b, p}, Sequence @@ {}], {b, 2, Sqrt@ n}]]; Array[ Length@ f@# &, 105] (* Robert G. Wilson v, Nov 01 2014 *)
  • PARI
    a(n) = {my(nb = 0); for (b=2, sqrt(n), d = digits(n, b); nb+= (Vecrev(d) == d);); nb;} \\ Michel Marcus, Nov 05 2014

Formula

a(n) = A135551(n) - A033831(n). - Robert G. Wilson v, Nov 01 2014

Extensions

a(58) from Robert G. Wilson v, Nov 05 2014
Showing 1-5 of 5 results.