cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060888 a(n) = n^6 - n^5 + n^4 - n^3 + n^2 - n + 1.

Original entry on oeis.org

1, 1, 43, 547, 3277, 13021, 39991, 102943, 233017, 478297, 909091, 1623931, 2756293, 4482037, 7027567, 10678711, 15790321, 22796593, 32222107, 44693587, 60952381, 81867661, 108450343, 141867727, 183458857, 234750601, 297474451, 373584043, 465273397, 574995877
Offset: 0

Views

Author

N. J. A. Sloane, May 05 2001

Keywords

Comments

a(n) = Phi_14(n) where Phi_k is the k-th cyclotomic polynomial.
Number of walks of length 7 between any two distinct nodes of the complete graph K_{n+1} (n>=1). - Emeric Deutsch, Apr 01 2004
For odd n, a(n) * (n+1) / 2 also represents the first integer in a sum of n^7 consecutive integers that equals n^14. - Patrick J. McNab, Dec 26 2016

Programs

  • Maple
    A060888 := proc(n)
            numtheory[cyclotomic](14,n) ;
    end proc:
    seq(A060888(n),n=0..20) ; # R. J. Mathar, Feb 11 2014
  • Mathematica
    Table[1-n+n^2-n^3+n^4-n^5+n^6,{n,0,30}] (* or *) LinearRecurrence[ {7,-21,35,-35,21,-7,1},{1,1,43,547,3277,13021,39991},30] (* or *) Cyclotomic[14,Range[0,30]] (* Harvey P. Dale, Jul 21 2012 *)
  • PARI
    a(n) = { n^6 - n^5 + n^4 - n^3 + n^2 - n + 1 } \\ Harry J. Smith, Jul 14 2009

Formula

G.f.: (1 - 6x + 57x^2 + 232x^3 + 351x^4 + 78x^5 + 7x^6)/(1-x)^7. - Emeric Deutsch, Apr 01 2004
a(0)=1, a(1)=1, a(2)=43, a(3)=547, a(4)=3277, a(5)=13021, a(6)=39991, a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7). - Harvey P. Dale, Jul 21 2012
E.g.f.: exp(x)*(1 + 21*x^2 +70*x^3 + 56*x^4 + 14*x^5 + x^6). - Stefano Spezia, Apr 22 2023