A060888 a(n) = n^6 - n^5 + n^4 - n^3 + n^2 - n + 1.
1, 1, 43, 547, 3277, 13021, 39991, 102943, 233017, 478297, 909091, 1623931, 2756293, 4482037, 7027567, 10678711, 15790321, 22796593, 32222107, 44693587, 60952381, 81867661, 108450343, 141867727, 183458857, 234750601, 297474451, 373584043, 465273397, 574995877
Offset: 0
Links
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- Index to values of cyclotomic polynomials of integer argument
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
Maple
A060888 := proc(n) numtheory[cyclotomic](14,n) ; end proc: seq(A060888(n),n=0..20) ; # R. J. Mathar, Feb 11 2014
-
Mathematica
Table[1-n+n^2-n^3+n^4-n^5+n^6,{n,0,30}] (* or *) LinearRecurrence[ {7,-21,35,-35,21,-7,1},{1,1,43,547,3277,13021,39991},30] (* or *) Cyclotomic[14,Range[0,30]] (* Harvey P. Dale, Jul 21 2012 *)
-
PARI
a(n) = { n^6 - n^5 + n^4 - n^3 + n^2 - n + 1 } \\ Harry J. Smith, Jul 14 2009
Formula
G.f.: (1 - 6x + 57x^2 + 232x^3 + 351x^4 + 78x^5 + 7x^6)/(1-x)^7. - Emeric Deutsch, Apr 01 2004
a(0)=1, a(1)=1, a(2)=43, a(3)=547, a(4)=3277, a(5)=13021, a(6)=39991, a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7). - Harvey P. Dale, Jul 21 2012
E.g.f.: exp(x)*(1 + 21*x^2 +70*x^3 + 56*x^4 + 14*x^5 + x^6). - Stefano Spezia, Apr 22 2023
Comments