A060933 Sixth convolution of Lucas numbers A000032(n+1), n >= 0.
1, 21, 217, 1498, 7910, 34566, 131446, 449732, 1416513, 4174765, 11651717, 31075422, 79751854, 198036146, 477899790, 1124785648, 2589534248, 5845989156, 12968091584, 28316428700, 60953528230, 129515454530, 271955244610, 564879359940, 1161646929275, 2366938010983, 4781794056543
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (7,-14,-7,49,-14,-77,29,77,-14,-49,-7,14,7,1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( ((1+2*x)/(1-x-x^2))^7 )); // G. C. Greubel, Apr 08 2021 -
Maple
m:= 40; S:= series( ((1+2*x)/(1-x-x^2))^7, x, m+1); seq(coeff(S, x, j), j = 0..m); # G. C. Greubel, Apr 08 2021
-
Mathematica
Table[(n+1)(2(100n^5+845n^4+2480n^3+4345n^2+5910n+2952)LucasL[n+2]+(125n^5+ 1030n^4+2995n^3+5930n^2+8280n+288)LucasL[n+1])/18000,{n,0,30}] (* Harvey P. Dale, Aug 13 2013 *) CoefficientList[Series[((1+2x)/(1-x-x^2))^7, {x,0,30}], x] (* Vincenzo Librandi, Aug 13 2013 *)
-
Sage
def A060930_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( ((1+2*x)/(1-x-x^2))^7 ).list() A060930_list(40) # G. C. Greubel, Apr 08 2021