A060934 Second column of Lucas bisection triangle (even part).
1, 17, 80, 303, 1039, 3364, 10493, 31885, 95032, 279051, 809771, 2327372, 6636025, 18794633, 52925984, 148303719, 413768263, 1150029940, 3185625077, 8797726981, 24230897416, 66574108227
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- É. Czabarka, R. Flórez, and L. Junes, A Discrete Convolution on the Generalized Hosoya Triangle, Journal of Integer Sequences, 18 (2015), #15.1.6.
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6,-1).
Programs
-
Magma
[2*n*Lucas(2*n+2) + Fibonacci(2*n+2): n in [0..30]]; // G. C. Greubel, Apr 09 2021
-
Mathematica
LinearRecurrence[{6,-11,6,-1}, {1,17,80,303}, 31] (* G. C. Greubel, Apr 09 2021 *) CoefficientList[Series[(1+11x-11x^2+4x^3)/(1-3x+x^2)^2,{x,0,30}],x] (* Harvey P. Dale, Aug 28 2021 *)
-
Sage
[2*n*lucas_number2(2*n+2,1,-1) + fibonacci(2*n+2) for n in (0..30)] # G. C. Greubel, Apr 09 2021
Formula
a(n) = A060923(n+1, 1).
G.f.: (1 + 11*x - 11*x^2 + 4*x^3)/(1 - 3*x + x^2)^2.
a(n) = 2*n*Lucas(2*n+2) + Fibonacci(2*n+2). - G. C. Greubel, Apr 09 2021
Comments