cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060934 Second column of Lucas bisection triangle (even part).

Original entry on oeis.org

1, 17, 80, 303, 1039, 3364, 10493, 31885, 95032, 279051, 809771, 2327372, 6636025, 18794633, 52925984, 148303719, 413768263, 1150029940, 3185625077, 8797726981, 24230897416, 66574108227
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Comments

Numerator of g.f. is row polynomial Sum_{m=0..3} A061186(2, m)*x^m.

Crossrefs

Programs

  • Magma
    [2*n*Lucas(2*n+2) + Fibonacci(2*n+2): n in [0..30]]; // G. C. Greubel, Apr 09 2021
    
  • Mathematica
    LinearRecurrence[{6,-11,6,-1}, {1,17,80,303}, 31] (* G. C. Greubel, Apr 09 2021 *)
    CoefficientList[Series[(1+11x-11x^2+4x^3)/(1-3x+x^2)^2,{x,0,30}],x] (* Harvey P. Dale, Aug 28 2021 *)
  • Sage
    [2*n*lucas_number2(2*n+2,1,-1) + fibonacci(2*n+2) for n in (0..30)] # G. C. Greubel, Apr 09 2021

Formula

a(n) = A060923(n+1, 1).
G.f.: (1 + 11*x - 11*x^2 + 4*x^3)/(1 - 3*x + x^2)^2.
a(n) = 2*n*Lucas(2*n+2) + Fibonacci(2*n+2). - G. C. Greubel, Apr 09 2021