cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A060957 Number of different products (including the empty product) of any subset of {1, 2, 3, ..., n}.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 26, 52, 88, 152, 238, 476, 648, 1296, 2016, 2984, 4232, 8464, 11360, 22720, 30544, 43744, 67072, 134144, 166336, 242752, 370992, 498144, 656832, 1313664, 1581312, 3162624, 3960384, 5517248, 8386080, 11111232, 13065792, 26131584, 39690432
Offset: 0

Views

Author

Jonas Wallgren, May 10 2001

Keywords

Comments

a(n) <= 2*a(n-1), with equality iff n is prime or n = 4. - Martin Fuller, Jun 03 2006
a(n) = 2^k * b(n) where k is the number of primes p such that n/2 < p <= n, and b(n) is the number of different products of subsets of {1, 2, ..., n} that exclude these primes. - David Radcliffe, Feb 11 2019
Conjecture: Let p <= n be prime. If m and p^a*m are two such products, then so is p^k*m for all 0 < k < a. - Yan Sheng Ang, Feb 13 2020
a(n) is even for n > 1. Since k is a product implies that n!/k is a product, a(n) is odd implies that n! is a square, which is impossible for n > 1 because of the Bertrand's postulate: for n > 1, there is a prime p in the range (n/2, n], so p divides n! while p^2 does not. - Jianing Song, Sep 26 2022

Examples

			a(4) = 8: the subsets of {1, 2, 3, 4} are {}, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}. The 16 numbers as the product are 1, 1, 2, 3, 4, 2, 3, 4, 6, 8, 12, 6, 8, 12, 24. There are only 8 distinct numbers: 1, 2, 3, 4, 6, 8, 12, 24.
a(6) = 26: the set {1, 2, 3, 4, 5, 6, 2*3, 2*4, 2*5, ..., 5*6, 2*3*4, 2*3*5, ..., 4*5*6, ..., ...2*3*4*5*6} contains 26 different values: {1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 20, 24, 30, 36, 40, 48, 60, 72, 90, 120, 144, 180, 240, 360, 720}
		

Crossrefs

Programs

  • Maple
    s:= proc(n) option remember; `if`(n=0, {1},
          map(x-> [x, x*n][], s(n-1)))
        end:
    a:= n-> nops(s(n)):
    seq(a(n), n=0..25);  # Alois P. Heinz, Aug 25 2016
  • Mathematica
    (* Script not convenient for n > 24 *) a[n_] := Times @@@ Subsets[Range[n]] // Union // Length; Table[Print["a(", n, ") = ", an = a[n]]; an, {n, 1, 24}] (* Jean-François Alcover, Feb 02 2015 *)
    s[n_] := s[n] = If[n == 0, {1}, Map[Function[x, {x, x*n}], s[n-1]]  // Flatten // Union]; a[n_] := Length[s[n]]; Table[an = a[n]; Print[n, " ", an]; an, {n, 0, 30}] (* Jean-François Alcover, Nov 01 2016, after Alois P. Heinz *)
  • Python
    from functools import cache
    @cache
    def s(n): return {1} if n == 0 else s(n-1) | set(x*n for x in s(n-1))
    def a(n): return len(s(n))
    print([a(n) for n in range(30)]) # Michael S. Branicky, Jul 31 2022 after Alois P. Heinz

Extensions

More terms from Lior Manor, May 26 2002
a(26)-a(32) from Giovanni Resta, Feb 14 2006
More terms from Martin Fuller, Jun 03 2006
a(0)=1 and a(37)-a(38) from Alois P. Heinz, Aug 25 2016