cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A092965 Greatest prime arising as the product of numbers chosen from among the first n numbers + 1.

Original entry on oeis.org

2, 3, 7, 13, 61, 241, 2521, 20161, 72577, 604801, 39916801, 59875201, 3113510401, 17435658241, 186810624001, 10461394944001, 118562476032001, 246245142528001, 24329020081766401, 304112751022080001
Offset: 1

Views

Author

Amarnath Murthy, Mar 26 2004

Keywords

Comments

There are a maximum of 2^n numbers which arise as the products of the subsets of the first n natural numbers. The actual number is smaller because of repetitions. Then a(n) = the greatest prime obtained on adding 1 to each of these numbers.
Different from A089136 (see the comments there).

Examples

			a(5) = 61 = 3*4*5 + 1. 5! + 1, 4!+ 1, are composite and 2*4*5 + 1 = 41 <61, etc.
		

Crossrefs

Programs

  • Mathematica
    Do[l = Map[Times @@ #&, Subsets[Range[n]]]; Print[Max[Select[Map[ #+1&, l], PrimeQ]]], {n, 20}] (* Ryan Propper, Aug 13 2005 *)
    f[n_] := Max@ Select[ Union[ Times @@@ Subsets@ Range@ n] + 1, PrimeQ]; Array[f, 20] (* Robert G. Wilson v, Nov 13 2014 *)

Extensions

More terms from Ryan Propper, Aug 13 2005

A070861 Triangle of all possible distinct numbers obtained as a product of distinct numbers from 1..n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 6, 1, 2, 3, 4, 6, 8, 12, 24, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 20, 24, 30, 36, 40, 48, 60, 72, 90, 120, 144, 180, 240, 360, 720, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 18, 20, 21, 24, 28, 30, 35, 36, 40, 42
Offset: 0

Views

Author

Amarnath Murthy, May 16 2002

Keywords

Comments

Factorials are a subsequence (A000142). - Reinhard Zumkeller, Jul 02 2011
More generally, all sequences of positive integers are subsequences. - Charles R Greathouse IV, Mar 06 2017

Examples

			Triangle begins:
  1;
  1;
  1, 2;
  1, 2, 3, 6;
  1, 2, 3, 4, 6, 8, 12, 24;
  ...
		

Crossrefs

Row sums give A070863.
Row products give A283261.

Programs

  • Haskell
    a070861 n = a070861_list !! (n-1)
    a070861_list = concat a070861_tabf
    a070861_tabf = [1] : f 2 [1] where
       f n ps = ps' : f (n+1) ps' where ps' = m ps $ map (n*) ps
       m []         ys = ys
       m xs'@(x:xs) ys'@(y:ys)
           | x < y     = x : m xs ys'
           | x == y    = x : m xs ys
           | otherwise = y : m xs' ys
    b070861 = bFile' "A070861" (concat $ take 20 a070861_tabf) 1
    -- Reinhard Zumkeller, Jul 02 2011
    
  • Maple
    T:= proc(n) option remember; `if`(n=0, 1,
          sort([map(x-> [x, x*n][], {T(n-1)})[]])[])
        end:
    seq(T(n), n=0..7);  # Alois P. Heinz, Aug 01 2022
  • Mathematica
    row[n_] := Times @@@ Subsets[Range[n]] // Flatten // Union; Table[row[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Feb 02 2015 *)
  • PARI
    row(n)=my(v=[2..n]); Set(vector(2^(n-1),i, factorback(vecextract(v,i-1)))) \\ Charles R Greathouse IV, Mar 06 2017

Formula

T(n,A060957(n)) = A000142(n) = n!. - Alois P. Heinz, Aug 01 2022

Extensions

Corrected and extended by Lior Manor, May 23 2002
Row n=0 prepended by Alois P. Heinz, Aug 01 2022

A070863 Sum of numbers in n-th row of A070861.

Original entry on oeis.org

1, 1, 3, 12, 60, 360, 2268, 18144, 152544, 1471008, 14963328, 179559936, 2156963328, 30197486592, 426680825088, 6448500066288, 103658110188528, 1865845983393504, 33623263082197152, 672465261643943040, 13457623759369050240, 283699943666342340480, 6265115909183775026880
Offset: 0

Views

Author

Amarnath Murthy, May 16 2002

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, {1},
          map(x-> [x, x*n][], b(n-1)))
        end:
    a:= n-> add(i, i=b(n)):
    seq(a(n), n=0..20);  # Alois P. Heinz, Aug 01 2022
  • Mathematica
    row[n_] := Times @@@ Subsets[Range[n]] // Flatten // Union; a[n_] := Total[row[n]]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 19}] (* Jean-François Alcover, Feb 02 2015 *)

Extensions

Corrected and extended by Lior Manor, May 26 2002
a(0)=1 prepended by Alois P. Heinz, Aug 01 2022

A283261 Product of the different products of subsets of the set of numbers from 1 to n.

Original entry on oeis.org

1, 1, 2, 36, 331776, 42998169600000000, 13974055172471046820331520000000000000, 1833132881579690383668380351534446872452674453158326975200092938148249600000000000000000000000000
Offset: 0

Views

Author

Jaroslav Krizek, Mar 04 2017

Keywords

Comments

Product of numbers in n-th row of A070861.

Examples

			Rows with subsets of the sets of numbers from 1 to n:
  {},
  {}, {1};
  {}, {1}, {2}, {1, 2};
  {}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3};
  ...
Rows with the products of elements of these subsets:
  1;
  1, 1;
  1, 1, 2, 2;
  1, 1, 2, 3, 2, 3, 6, 6;
  ...
Rows with the different products of elements of these subsets:
  1;
  1;
  1, 2;
  1, 2, 3, 6;
  ...
a(0) = 1, a(1) = (1), a(2) = (1*2) = 2, a(3) = (1*2*3*6) = 36, ... .
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, {1},
          map(x-> [x, x*n][], b(n-1)))
        end:
    a:= n-> mul(i, i=b(n)):
    seq(a(n), n=0..7);  # Alois P. Heinz, Aug 01 2022
  • Mathematica
    Table[Times @@ Union@ Map[Times @@ # &, Subsets@ Range@ n], {n, 7}] (* Michael De Vlieger, Mar 05 2017 *)
  • PARI
    a(n)=my(v=[2..n]); factorback(Set(vector(2^(n-1),i, factorback(vecextract(v,i-1))))) \\ Charles R Greathouse IV, Mar 06 2017

Formula

a(n) <= n!^((A000005(n!))/2) = n!^(A027423(n)/2). - David A. Corneth, Mar 05 2017
a(n) = n!^(A263292(n)). - David A. Corneth, Mar 06 2017

Extensions

a(0)=1 prepended by Alois P. Heinz, Aug 01 2022

A092967 Largest prime of the form a squarefree number + 1 where the prime divisors of the squarefree number are < n.

Original entry on oeis.org

2, 3, 7, 7, 31, 31, 211, 211, 211, 211, 2311, 2311, 6007, 6007, 6007, 6007, 102103, 102103, 3233231, 3233231, 3233231, 3233231, 17160991
Offset: 1

Views

Author

Amarnath Murthy, Mar 26 2004

Keywords

Comments

Conjecture: a(n)-1 has prime(n)-1 divisors. Subsidiary sequence: Number of primes of the form 2*p*q*r*...+1 where p, q, r, etc. are distinct odd primes < n.

Examples

			a(13) = 6007 = 2*3*7*11*13 + 1, as 2*5*7*11*13 + 1, etc. are composite.
		

Crossrefs

Programs

  • Mathematica
    <Ryan Propper, Aug 13 2005 *)

Extensions

More terms from Ryan Propper, Aug 13 2005

A307105 Number of rational numbers which can be constructed from the set of integers between 1 and n, through a combination of multiplication and division.

Original entry on oeis.org

1, 1, 3, 9, 21, 63, 117, 351, 621, 1161, 2043, 6129, 8631, 25893, 45135, 71685, 102285, 306855, 420309, 1260927, 1755513, 2671299, 4571073, 13713219, 17156853, 25778169, 43930755, 59315085, 80765235, 242295705, 295267275, 885801825
Offset: 0

Views

Author

Brian Barsotti, Jul 07 2019

Keywords

Comments

This sequence can contain only odd terms, because apart from 1, for every term x/y there is always the corresponding terms y/x. - Giovanni Resta, Jul 07 2019
a(n) <= 3*a(n-1), with equality iff n is prime. - Yan Sheng Ang, Feb 13 2020
Conjecture: Let p <= n be prime. If m and p^a*m are two such rationals, then so is p^k*m for all 0 < k < a. - Yan Sheng Ang, Feb 13 2020

Examples

			a(2) = 3 because {1,2} can create {1/2, 1, 2}.
a(3) = 9 because {1,2,3} can create {1/6, 1/3, 1/2, 2/3, 1, 3/2, 2, 3, 6}.
a(4) = 21 because {1,2,3,4} can create {1/24, 1/12, 1/8, 1/6, 1/4, 1/3, 3/8, 1/2, 2/3, 3/4, 1, 4/3, 3/2, 2, 8/3, 3, 4, 6, 8, 12, 24}.
		

Crossrefs

Programs

  • Maple
    s:= proc(n) option remember; `if`(n=0, {1},
          map(x-> [x, x*n, x/n][], s(n-1)))
        end:
    a:= n-> nops(s(n)):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jul 29 2019
  • Mathematica
    L={}; s={1}; Do[s = Union[s, s/k, s*k]; AppendTo[L, Length@ s], {k, 13}]; L (* Giovanni Resta, Jul 07 2019 *)

Formula

a(p) = 3 * a(p-1), for p prime. - Giovanni Resta, Jul 07 2019

Extensions

a(9)-a(31) from Giovanni Resta, Jul 07 2019

A255937 Number of distinct products of distinct factorials up to n!.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 28, 56, 108, 204, 332, 664, 1114, 2228, 4078, 7018, 11402, 22804, 40638, 81276, 140490, 230328, 391544, 783088, 1287034, 2273676, 3903626, 6837760, 10368184, 20736368, 34081198, 68162396
Offset: 0

Views

Author

Keywords

Examples

			a(3) = |{1!, 2!, 3!, 2!*3!}| = |{1, 2, 6, 12}| = 4.
		

Crossrefs

Programs

  • Maple
    s:= proc(n) option remember; (f-> `if`(n=0, {f},
          map(x-> [x, x*f][], s(n-1))))(n!)
        end:
    a:= n-> nops(s(n)):
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 16 2015
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, If[PrimeQ[n], 2 a[n-1], Times @@@ ((Subsets[Range[n]] // Rest) /. k_Integer -> k!) // Union // Length]];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 23}] (* Jean-François Alcover, May 01 2022 *)
  • PARI
    a(n)=my(v=[1],N=n!); for(k=2,n-1, v=Set(concat(v,v*k!))); #v + sum(i=1,#v, !setsearch(v,N*v[i]))

Formula

Erdős and Graham prove that log a(n) ~ n log log n/log n.
a(p) = 2*a(p-1) for prime p. - Jon E. Schoenfield, Apr 01 2015

Extensions

More terms from Alois P. Heinz, Mar 16 2015
a(31) (=2*a(30)) from Jon E. Schoenfield, Apr 01 2015

A255962 Number of repeating products of any subset of {1, 2, 3, ..., n}.

Original entry on oeis.org

0, 1, 3, 7, 15, 37, 75, 167, 359, 785, 1571, 3447, 6895, 14367, 29783, 61303, 122607, 250783, 501567, 1018031, 2053407, 4127231, 8254463, 16610879, 33311679, 66737871, 133719583, 267778623, 535557247, 1072160511, 2144321023, 4291006911, 8584417343, 17171483103, 34348627135, 68706410943
Offset: 1

Views

Author

Derek Orr, Mar 11 2015

Keywords

Examples

			a(3) = (number of possible subsets of {1,2,3}) - |{1, 2, 3, 1*2, 1*3, 2*3, 1*2*3}| = 2^3-1 - |{1,2,3,6}| = 3. Equivalently, there are three repeating products (2, 3, and 6) so a(3) = 3.
		

Crossrefs

Programs

  • Mathematica
    (* Script not convenient for n > 24 *) f[n_] := Block[{lst = Times @@@ Subsets[Range@ n, n]}, 2^n - 1 - Length@ Select[Tally@ lst, Last@ # > 1 &]]; Array[f, 16] (* Michael De Vlieger, Mar 13 2015 *)

Formula

a(n) = 2^n - 1 - A060957(n) = A000225(n) - A060957(n).
Showing 1-8 of 8 results.