cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061040 Denominator of 1/9 - 1/n^2.

Original entry on oeis.org

1, 144, 225, 12, 441, 576, 81, 900, 1089, 48, 1521, 1764, 75, 2304, 2601, 324, 3249, 3600, 147, 4356, 4761, 64, 5625, 6084, 729, 7056, 7569, 100, 8649, 9216, 363, 10404, 11025, 1296, 12321, 12996, 507, 14400, 15129, 588, 16641, 17424
Offset: 3

Views

Author

N. J. A. Sloane, May 26 2001

Keywords

Comments

See A061039 (numerators) for comments, references and links.

Crossrefs

Cf. A061039.

Programs

  • Haskell
    import Data.Ratio ((%), denominator)
    a061040 n = denominator $ 1%9 - 1%n^2 -- Reinhard Zumkeller, Jan 03 2012
    
  • Mathematica
    Denominator[1/9-1/Range[3,50]^2] (* Harvey P. Dale, Jan 16 2012 *)
  • PARI
    a(n)=denominator(1/9 - 1/n^2) \\ Charles R Greathouse IV, Feb 07 2017
    
  • Python
    from math import gcd
    def A061040(n): return 9*n**2//gcd(n**2-9,9*n**2) # Chai Wah Wu, Apr 02 2021
    
  • Sage
    [denominator(1/9 -1/n^2) for n in (3..50)] # G. C. Greubel, Mar 10 2022

Formula

a(n) = denominator(n^2 - 9)/(9*n^2), n >= 3.
a(n) = (n^2)/9 if n == 3 or 24 (mod 27), a(n) = (n^2)/3 if n == 6 or 12 or 15 or 21 (mod 27), a(n) = n^2 if n == 0 (mod 9) and 9*n^2 otherwise. From the period length 27 sequence gcd(n^2 - 9, 9*n^2). - Wolfdieter Lang, Mar 15 2018