cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061132 Number of degree-n even permutations of order dividing 10.

Original entry on oeis.org

1, 1, 1, 1, 4, 40, 190, 610, 1660, 13420, 174700, 1326700, 30818800, 342140800, 2534931400, 16519411000, 143752426000, 4842417082000, 73620307162000, 687934401562000, 17165461784680000, 308493094924720000, 4585953613991980000, 53843602355379220000
Offset: 0

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Examples

			For n=4 the a(4)=4 solutions are (1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3) (permutations in cyclic notation). - _Luis Manuel Rivera Martínez_, Jun 18 2019
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, John Wiley & Sons, Inc. New York, 1958 (Chap 4, Problem 22).

Crossrefs

Programs

  • Mathematica
    With[{nn = 22}, CoefficientList[Series[1/2 Exp[x + x^2/2 + x^5/5 + x^10/10] + 1/2 Exp[x - x^2/2 + x^5/5 - x^10/10], {x, 0, nn}], x]* Range[0, nn]!] (* Luis Manuel Rivera Martínez, Jun 18 2019 *)
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1/2*exp(x + 1/2*x^2 + 1/5*x^5 + 1/10*x^10) + 1/2*exp(x - 1/2*x^2 + 1/5*x^5 - 1/10*x^10))) \\ Michel Marcus, Jun 18 2019

Formula

E.g.f.: 1/2*exp(x + 1/2*x^2 + 1/5*x^5 + 1/10*x^10) + 1/2*exp(x - 1/2*x^2 + 1/5*x^5 - 1/10*x^10).