A061163 a(n) = (10n)!*n!/((5n)!*(4n)!*(2n)!).
1, 630, 1385670, 3528923580, 9540949030470, 26651569523959380, 75998432812419471900, 219813190240007470094520, 642409325786050322446410310, 1892390644737640220059489996260
Offset: 0
References
- M. Kontsevich and D. Zagier, Periods, in Mathematics Unlimited - 2001 and Beyond, Springer, Berlin, 2001, pp. 771-808.
Links
- J. W. Bober, Factorial ratios, hypergeometric series, and a family of step functions, 2007, arXiv:0709.1977 [math.NT], 2007; Jour. of the London Math. Soc., Vol. 79, Issue 2, 422-444.
- M. Kontsevich and D. Zagier, Periods, Institut des Hautes Etudes Scientifiques 2001 IHES/M/01/22, p. 11.
- F. Rodriguez-Villegas, Integral ratios of factorials and algebraic hypergeometric functions, arXiv:math/0701362 [math.NT], 2007.
Crossrefs
Programs
-
Maple
A061163 := n->(10*n)!*n!/((5*n)!*(4*n)!*(2*n)!); # Alternative: A := (n, k) -> 4^(n*k)*(GAMMA((n + 1)*k + 1/2)/GAMMA(k + 1/2))/GAMMA(n*k + 1): seq(A(4, k), k = 0..9); # Peter Luschny, Feb 21 2024
-
Mathematica
Table[(10n)! n!/((5n)!(4n)!(2n)!),{n,0,10}] (* Harvey P. Dale, Oct 24 2022 *)
Formula
n*(4*n-3)*(2*n-1)*(4*n-1)*a(n) -10*(10*n-9)*(10*n-7)*(10*n-3)*(10*n-1)*a(n-1)=0. - R. J. Mathar, Oct 26 2014
O.g.f. is a generalized hypergeometric function 4F3([1/10, 3/10, 7/10, 9/10], [1/4, 1/2, 3/4], 5^5*z). - Karol A. Penson, Apr 13 2022
From Karol A. Penson, Feb 21 2024: (Start)
(O.g.f.(z))^2 satisfies the algebraic equation of order 15, in which the powers of (O.g.f.(z))^2 are multiplied by polynomials p(n, z) with integer coefficients, in the form: Sum_{n = 0..15} p(n, z)*(O.g.f.(z))^(2*n) = 0.
Here is the list of orders, in the variable z, of all polynomials p(n, z) for n=0..15: 9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,11,12. For example p(15, z) = 2^50*(5^5*z-1)^12. (End)
a(n) ~ 5^(5*n) / (2^(3/2) * sqrt(Pi*n)). - Vaclav Kotesovec, Aug 27 2024
Comments