A061177 Coefficients of polynomials ( (1 -x +sqrt(x))^(n+1) - (1 -x -sqrt(x))^(n+1) )/(2*sqrt(x)).
1, 2, -2, 3, -5, 3, 4, -8, 8, -4, 5, -10, 11, -10, 5, 6, -10, 6, -6, 10, -6, 7, -7, -14, 29, -14, -7, 7, 8, 0, -56, 120, -120, 56, 0, -8, 9, 12, -126, 288, -365, 288, -126, 12, 9, 10, 30, -228, 540, -770, 770, -540, 228, -30, -10, 11, 55, -363, 858
Offset: 0
Examples
The first few polynomials are: pFo(0, x) = 1. pFo(1, x) = 2 - 2*x. pFo(2, x) = 3 - 5*x + 3*x^2. pFo(3, x) = 4 - 8*x + 8*x^2 - 4*x^3. pFo(4, x) = 5 - 10*x + 11*x^2 - 10*x^3 + 5*x^4. pFo(5, x) = 6 - 10*x + 6*x^2 - 6*x^3 + 10*x^4 - 6*x^5. Number triangle begins as: 1; 2, -2; 3, -5, 3; 4, -8, 8, -4; 5, -10, 11, -10, 5; 6, -10, 6, -6, 10, -6; 7, -7, -14, 29, -14, -7, 7; 8, 0, -56, 120, -120, 56, 0, -8; 9, 12, -126, 288, -365, 288, -126, 12, 9; 10, 30, -228, 540, -770, 770, -540, 228, -30, -10;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
A061177:= func< n,k | (&+[(-1)^(k+j)*Binomial(n+1,2*j+1)*Binomial(n-2*j,k-j): j in [0..k]]) >; [A061177(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 06 2021
-
Mathematica
T[n_, k_]:= Sum[(-1)^(k-j)*Binomial[n+1, 2*j+1]*Binomial[n-2*j, k-j], {j,0,k}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Apr 06 2021 *)
-
Sage
def A061177(n,k): return sum((-1)^(k+j)*binomial(n+1,2*j+1)*binomial(n-2*j,k-j) for j in (0..k)) flatten([[A061177(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Apr 06 2021
Formula
T(n, k) = coefficient of x^k of ( (1 -x +sqrt(x))^(n+1) - (1 -x -sqrt(x))^(n+1) )/(2*sqrt(x)).
T(n, k) = Sum_{j=0..k} (-1)^(k-j)*binomial(n+1, 2*j+1)*binomial(n-2*j, k-j), if 0 <= k <= floor(n/2), T(n, k) = (-1)^n*T(n, n-k) if floor(n/2) < k <= n else 0.
Sum_{k=0..n} T(n, k) = (1 + (-1)^n)/2 = A059841(n). - G. C. Greubel, Apr 06 2021
Comments