cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061203 (tau<=)_5(n).

Original entry on oeis.org

1, 6, 11, 26, 31, 56, 61, 96, 111, 136, 141, 216, 221, 246, 271, 341, 346, 421, 426, 501, 526, 551, 556, 731, 746, 771, 806, 881, 886, 1011, 1016, 1142, 1167, 1192, 1217, 1442, 1447, 1472, 1497, 1672, 1677, 1802, 1807, 1882, 1957, 1982, 1987, 2337, 2352
Offset: 1

Views

Author

Vladeta Jovovic, Apr 21 2001

Keywords

Comments

(tau<=)_k(n) = |{(x_1,x_2,...,x_k): x_1*x_2*...*x_k <= n}|, i.e., (tau<=)_k(n) is number of solutions to x_1*x_2*...*x_k <= n, x_i > 0.
Partial sums of A061200.
Equals row sums of triangle A140705. - Gary W. Adamson, May 24 2008

Crossrefs

Cf. tau_2(n): A000005, tau_3(n): A007425, tau_4(n): A007426, tau_5(n): A061200, tau_6(n): A034695, (unordered) 2-factorizations of n: A038548, (unordered) 3-factorizations of n: A034836, A001055, (tau<=)_2(n): A006218, (tau<=)_3(n): A061201, (tau<=)_4(n): A061202, (tau<=)_6(n): A061204.
Cf. A140705.

Programs

  • Maple
    b:= proc(k, n) option remember; uses numtheory;
         `if`(k=1, 1, add(b(k-1, d), d=divisors(n)))
        end:
    a:= proc(n) option remember; `if`(n=0, 0, b(5, n)+a(n-1)) end:
    seq(a(n), n=1..49);  # Alois P. Heinz, Feb 13 2022
  • Mathematica
    nmax = 50;
    tau4 = Table[DivisorSum[n, DivisorSigma[0, n/#]*DivisorSigma[0, #] &], {n, 1, nmax}];
    Accumulate[Table[Sum[tau4[[d]], {d, Divisors[n]}], {n, nmax}]] (* Vaclav Kotesovec, Sep 10 2018 *)

Formula

(tau<=)k(n) = Sum{i=1..n} tau_k(i).
a(n) = Sum_{k=1..n} tau_{4}(k) * floor(n/k), where tau_{4} is A007426. - Enrique Pérez Herrero, Jan 23 2013
a(n) ~ n*(log(n)^4/24 + (5*g/6 - 1/6)*log(n)^3 + 10*g1^2 + (5*g^2 - 5*g/2 - 5*g1/2 + 1/2)*log(n)^2 + (10*g^3 - 10*g^2 + (5 - 20*g1)*g + 5*g1 + 5*g2/2 - 1)*log(n) + 5*g^4 - 10*g^3 + (10 - 30*g1)*g^2 + (20*g1 + 10*g2 - 5)*g - 5*g1 - 5*g2/2 - 5*g3/6 + 1), where g is the Euler-Mascheroni constant A001620 and g1, g2, g3 are the Stieltjes constants, see A082633, A086279 and A086280. - Vaclav Kotesovec, Sep 10 2018