cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A061201 Partial sums of A007425: (tau<=)_3(n).

Original entry on oeis.org

1, 4, 7, 13, 16, 25, 28, 38, 44, 53, 56, 74, 77, 86, 95, 110, 113, 131, 134, 152, 161, 170, 173, 203, 209, 218, 228, 246, 249, 276, 279, 300, 309, 318, 327, 363, 366, 375, 384, 414, 417, 444, 447, 465, 483, 492, 495, 540, 546, 564, 573, 591, 594, 624, 633, 663
Offset: 1

Views

Author

Vladeta Jovovic, Apr 21 2001

Keywords

Comments

(tau<=)_k(n) = |{(x_1,x_2,...,x_k): x_1*x_2*...*x_k<=n}|, i.e., tau<=_k(n) is number of solutions to x_1*x_2*...*x_k<=n, x_i > 0.
A061201(n) is the number of 4-tuples (w,x,y,z) having all terms in {1,...,n} and w=x*y*z; see A211795 for a list of related counting sequences. - Clark Kimberling, Apr 28 2012
The formula for Sum_{k=1..n} d3(k) in the Benoit Cloitre article on page 15 is incorrect. For correct asymptotic formula see below or generate it in the Mathematica: Residue[Zeta[s]^3 * n^s/s, {s, 1}] // Expand. - Vaclav Kotesovec, Aug 19 2021

References

  • M. N. Huxley, Area, Lattice Points and Exponential Sums, Oxford, 1996; p. 239.

Crossrefs

Cf. tau_2(n): A000005, tau_3(n): A007425, tau_4(n): A007426, tau_5(n): A061200, tau_6(n): A034695, (unordered) 2-factorizations of n: A038548, (unordered) 3-factorizations of n: A034836, A001055, (tau<=)_2(n): A006218, (tau<=)_4(n): A061202, (tau<=)_5(n): A061203, (tau<=)_6(n): A061204.

Programs

  • Magma
    [&+[NumberOfDivisors(k)*Floor(n/k): k in [1..n]]: n in [1..56]];  // Bruno Berselli, Apr 13 2011
    
  • Maple
    b:= proc(k, n) option remember; uses numtheory;
         `if`(k=1, 1, add(b(k-1, d), d=divisors(n)))
        end:
    a:= proc(n) option remember; `if`(n=0, 0, b(3, n)+a(n-1)) end:
    seq(a(n), n=1..76);  # Alois P. Heinz, Oct 23 2023
  • Mathematica
    a[n_] := Sum[ DivisorSigma[0, k]*Floor[n/k], {k, 1, n}]; Table[a[n], {n, 1, 56}] (* Jean-François Alcover, Sep 20 2011, after Benoit Cloitre *)
    (* Asymptotics: *) n*(Log[n]^2/2 + (3*EulerGamma - 1)*Log[n] + 3*EulerGamma^2 - 3*EulerGamma - 3*StieltjesGamma[1] + 1) (* Vaclav Kotesovec, Sep 09 2018 *)
    Accumulate[a[n_]:=DivisorSum[n, DivisorSigma[0, #]&]; Array[a, 60]] (* Vincenzo Librandi, Jan 12 2020 *)
  • PARI
    a(n)=sum(k=1,n,numdiv(k)*floor(n/k)) \\ Benoit Cloitre, Apr 19 2007
    
  • PARI
    { for (n=1, 1000, write("b061201.txt", n, " ", sum(k=1, n, numdiv(k)*(n\k))) ) } \\ Harry J. Smith, Jul 18 2009
    
  • PARI
    my(N=60, x='x+O('x^N)); Vec(sum(k=1, N, numdiv(k)*x^k/(1-x^k))/(1-x)) \\ Seiichi Manyama, Jul 24 2022
    
  • Python
    from math import isqrt
    from sympy import integer_nthroot
    def A061201(n): return (m:=integer_nthroot(n,3)[0])**3+3*sum(-(s:=isqrt(r:=n//i))**2+(sum(r//k for k in range(1,s+1))<<1)-sum(n//(i*j) for j in range(1,m+1)) for i in range(1,m+1)) # Chai Wah Wu, Oct 23 2023

Formula

(tau<=)k(n) = Sum{i=1..n} tau_k(i).
a(n) = n * ( log(n)^2/2 + (3*g-1)*log(n) + 3*g^2-3*g-3*g1+1 ) + O(sqrt(n)), where g is the Euler-Mascheroni number ~ 0.57721... (see A001620), and g1 is the first Stieltjes constant ~ -0.072816 (see A082633). The determination of the precise size of the error term is an unsolved problem - see references. - Andrew Lelechenko, Apr 15 2011 [corrected by Vaclav Kotesovec, Sep 09 2018]
a(n) = Sum_{k=1..n} A000005(k)*floor(n/k). - Benoit Cloitre, Apr 19 2007
To compute a(n) for huge n (see A180365) in sublinear use a(n) = 3*Sum_{i=1..n3} A006218(n/i) - Sum_{j=1..n3} floor(n/(i*j)) + n3^3, where n3 = floor(n^(1/3)). - Andrew Lelechenko, Apr 15 2011
a(n) = Sum_{k=1..n} Sum_{i=1..n} floor(n/(i*k)). - Wesley Ivan Hurt, Sep 14 2017
G.f.: (1/(1-x)) * Sum_{k>=1} A000005(k) * x^k/(1 - x^k). - Seiichi Manyama, Jul 24 2022

A061200 tau_5(n) = number of ordered 5-factorizations of n.

Original entry on oeis.org

1, 5, 5, 15, 5, 25, 5, 35, 15, 25, 5, 75, 5, 25, 25, 70, 5, 75, 5, 75, 25, 25, 5, 175, 15, 25, 35, 75, 5, 125, 5, 126, 25, 25, 25, 225, 5, 25, 25, 175, 5, 125, 5, 75, 75, 25, 5, 350, 15, 75, 25, 75, 5, 175, 25, 175, 25, 25, 5, 375, 5, 25, 75, 210, 25, 125, 5, 75, 25, 125, 5
Offset: 1

Views

Author

Vladeta Jovovic, Apr 21 2001

Keywords

Crossrefs

Cf. tau_2(n): A000005, tau_3(n): A007425, tau_4(n): A007426, tau_6(n): A034695, (unordered) 2-factorization of n: A038548, (unordered) 3-factorization of n: A034836, A001055, A006218, A061201, A061202, A061203 (partial sums), A061204.
Column k=5 of A077592.

Programs

  • Mathematica
    tau[n_, 1] = 1; tau[n_, k_] := tau[n, k] = Plus @@ (tau[ #, k - 1] & /@ Divisors[n]); Table[ tau[n, 5], {n, 77}] (* Robert G. Wilson v *)
    tau[1, k_] := 1; tau[n_, k_] := Times @@ (Binomial[Last[#]+k-1, k-1]& /@ FactorInteger[n]); Table[tau[n, 5], {n, 1, 100}] (* Amiram Eldar, Sep 13 2020 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,k,sumdiv(k,x,sumdiv(x,y,numdiv(y)))),","))
    
  • PARI
    a(n)=sumdivmult(n,k,sumdivmult(k,x,sumdivmult(x,y,numdiv(y)))) \\ Charles R Greathouse IV, Sep 09 2014
    
  • PARI
    a(n, f=factor(n))=f=f[, 2]; prod(i=1, #f, binomial(f[i]+4, 4)) \\ Charles R Greathouse IV, Oct 28 2017
    
  • PARI
    for(n=1, 100, print1(numerator(direuler(p=2, n, 1/(1-X)^5)[n]), ", ")) \\ Vaclav Kotesovec, May 06 2025
    
  • Python
    from math import prod, comb
    from sympy import factorint
    def A061200(n): return prod(comb(4+e,4) for e in factorint(n).values()) # Chai Wah Wu, Dec 22 2024

Formula

tau_k(n) = |{(x_1,x_2,...,x_k): x_1*x_2*...*x_k=n}|, number of ordered k-factorizations of n.
tau_k(p^m) = (-1)^(k-1)*binomial(-m-1,k-1), p prime.
limit(tau_k(n)/n^epsilon, n=infinity) = 0, for any epsilon>0.
tau_k(n) = Sum_{d|n} tau_(k-1)(d), tau_1(n)=1.
Dirichlet g.f.: (zeta(s))^k.
For explicit formula, see A007425.
G.f.: Sum_{k>=1} tau_4(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Oct 30 2018

A061202 (tau<=)_4(n).

Original entry on oeis.org

1, 5, 9, 19, 23, 39, 43, 63, 73, 89, 93, 133, 137, 153, 169, 204, 208, 248, 252, 292, 308, 324, 328, 408, 418, 434, 454, 494, 498, 562, 566, 622, 638, 654, 670, 770, 774, 790, 806, 886, 890, 954, 958, 998, 1038, 1054, 1058, 1198, 1208, 1248, 1264, 1304, 1308
Offset: 1

Views

Author

Vladeta Jovovic, Apr 21 2001

Keywords

Comments

(tau<=)_k(n) = |{(x_1,x_2,...,x_k): x_1*x_2*...*x_k <= n}|, i.e., (tau<=)_k(n) is number of solutions to x_1*x_2*...*x_k <= n, x_i > 0.
Partial sums of A007426.
Equals row sums of triangle A140703. - Gary W. Adamson, May 24 2008

Crossrefs

Cf. tau_2(n): A000005, tau_3(n): A007425, tau_4(n): A007426, tau_5(n): A061200, tau_6(n): A034695, (unordered) 2-factorizations of n: A038548, (unordered) 3-factorizations of n: A034836, A001055, (tau<=)_2(n): A006218, (tau<=)_3(n): A061201, (tau<=)_5(n): A061203, (tau<=)_6(n): A061204.
Equals left column of triangle A140705.
Cf. A140703.

Programs

  • Mathematica
    (* Asymptotics: *) n * (Log[n]^3/6 + (2*EulerGamma - 1/2)*Log[n]^2 + (6*EulerGamma^2 - 4*EulerGamma - 4*StieltjesGamma[1] + 1)*Log[n] + 4*EulerGamma^3 - 6*EulerGamma^2 + 4*EulerGamma + 4*StieltjesGamma[1]*(1 - 3*EulerGamma) + 2*StieltjesGamma[2] - 1) (* Vaclav Kotesovec, Sep 09 2018 *)

Formula

(tau<=)k(n) = Sum{i=1..n} tau_k(i).
a(n) = Sum_{k = 1..n} tau_{3}(k)*floor (n/k), where tau_{3} is A007425. - Enrique Pérez Herrero, Jan 23 2013
a(n) ~ n * (log(n)^3/6 + (2*g - 1/2)*log(n)^2 + (6*g^2 - 4*g - 4*g1 + 1)*log(n) + 4*g^3 - 6*g^2 + 4*g + 4*g1*(1 - 3*g) + 2*g2 - 1), where g is the Euler-Mascheroni constant A001620, g1 and g2 are the Stieltjes constants, see A082633 and A086279. - Vaclav Kotesovec, Sep 09 2018
a(n) = Sum_{i=1..n} tau(i)*A006218(floor(n/i)). - Ridouane Oudra, Sep 17 2021
a(n) = Sum_{i=1..n} Sum_{j=1..n} Sum_{k=1..n} floor(n/(i*j*k)). - Ridouane Oudra, Oct 31 2022

A061204 (tau<=)_6(n).

Original entry on oeis.org

1, 7, 13, 34, 40, 76, 82, 138, 159, 195, 201, 327, 333, 369, 405, 531, 537, 663, 669, 795, 831, 867, 873, 1209, 1230, 1266, 1322, 1448, 1454, 1670, 1676, 1928, 1964, 2000, 2036, 2477, 2483, 2519, 2555, 2891, 2897, 3113, 3119, 3245, 3371, 3407, 3413
Offset: 1

Views

Author

Vladeta Jovovic, Apr 21 2001

Keywords

Comments

(tau<=)_k(n) = |{(x_1,x_2,...,x_k): x_1*x_2*...*x_k<=n}|, i.e. (tau<=)_k(n) is number of solutions to x_1*x_2*...*x_k<=n, x_i>0.

Crossrefs

Cf. tau_2(n): A000005, tau_3(n): A007425, tau_4(n): A007426, tau_5(n): A061200, tau_6(n): A034695, (unordered) 2-factorizations of n: A038548, (unordered) 3-factorizations of n: A034836, A001055, (tau<=)_2(n): A006218, (tau<=)_3(n): A061201, (tau<=)_4(n): A061202, (tau<=)_5(n): A061203.

Programs

  • Mathematica
    nmax = 50; tau4 = Table[DivisorSum[n, DivisorSigma[0, n/#]*DivisorSigma[0, #] &], {n, 1, nmax}]; tau5 = Table[Sum[tau4[[d]], {d, Divisors[n]}], {n, nmax}]; Accumulate[Table[Sum[tau5[[d]], {d, Divisors[n]}], {n, nmax}]] (* Vaclav Kotesovec, Sep 10 2018 *)

Formula

(tau<=)k(n)=Sum{i=1..n} tau_k(i). a(n)=partial sums of A034695.
a(n) = Sum_{k=1..n} tau_{5}(k) * floor(n/k), where tau_{5} is A061200. - Enrique Pérez Herrero, Jan 23 2013
a(n) ~ n*(log(n)^5/120 + (g/4 - 1/24)*log(n)^4 + (5*g^2/2 - g - g1 + 1/6)*log(n)^3 + (10*g^3 - 15*g^2/2 + (3 - 15*g1)*g + 3*g1 + 3*g2/2 - 1/2)*log(n)^2 + (15*g^4 - 20*g^3 + (15 - 60*g1)*g^2 + (30*g1 + 15*g2 - 6)*g + 15*g1^2 - 6*g1 - 3*g2 - g3 + 1)*log(n) + 6*g^5 - 15*g^4 + (20 - 60*g1)*g^3 + (60*g1 + 30*g2 - 15)*g^2 + (60*g1^2 - 30*g1 - 15*g2 - 5*g3 + 6)*g - 15*g1^2 + g1*(6 - 15*g2) + 3*g2 + g3 + g4/4 - 1), where g is the Euler-Mascheroni constant A001620 and g1, g2, g3, g4 are the Stieltjes constants, see A082633, A086279, A086280 and A086281. - Vaclav Kotesovec, Sep 10 2018

A077593 Table by antidiagonals where T(n,k) = Sum_{i=1..n} T(floor(n/i),k-1) starting with T(n,0)=1 if n>0 and T(0,0)=0.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 5, 4, 1, 0, 1, 5, 7, 8, 5, 1, 0, 1, 6, 9, 13, 10, 6, 1, 0, 1, 7, 11, 19, 16, 14, 7, 1, 0, 1, 8, 13, 26, 23, 25, 16, 8, 1, 0, 1, 9, 15, 34, 31, 39, 28, 20, 9, 1, 0, 1, 10, 17, 43, 40, 56, 43, 38, 23, 10, 1, 0, 1, 11, 19, 53, 50, 76, 61, 63
Offset: 0

Views

Author

Henry Bottomley, Nov 08 2002

Keywords

Examples

			Rows start:
 0,0,0,0,0,0...;
 1,1,1,1,1,1...;
 1,2,3,4,5,6...;
 1,3,5,7,9,11...;
 1,4,8,13,19,26,...;
 ...
		

Crossrefs

Rows include (with offsets) A000004, A000012, A000027, A005408, A034856, A052905.
Cf. A077593.

Formula

T(n, k) = T(n-1, k) + A077592(n, k). Writing m as Sum_{i} p_i^e_i, T(n, k) = Sum_{m=1..n} Product_{i} C(k+e_i-1, e_i).

A140705 A000012 * A051731^4.

Original entry on oeis.org

1, 5, 1, 9, 1, 1, 19, 5, 1, 1, 23, 5, 1, 1, 1, 39, 9, 5, 1, 1, 1, 43, 9, 5, 1, 1, 1, 1, 63, 19, 5, 5, 1, 1, 1, 1, 73, 19, 9, 5, 1, 1, 1, 1, 1, 89, 23, 9, 5, 5, 1, 1, 1, 1, 1, 93, 23, 9, 5, 5, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, May 24 2008

Keywords

Comments

Row sums = A061203: (1, 6, 11, 26, 31, 56,...).
Left column = A061202: (1, 5, 9, 19, 23, 39,...).

Examples

			First few rows of the triangle are:
1;
5, 1;
9, 1, 1;
19, 5, 1, 1;
23, 5, 1, 1, 1;
39, 9, 5, 1, 1, 1;
43, 9, 5, 1, 1, 1, 1;
63, 19, 5, 5, 1, 1, 1, 1;
...
		

Crossrefs

Formula

A000012 * A051731^4 as infinite lower triangular matrices, where A051731 = the inverse Mobius transform and A000012 = an infinite lower triangular matrix with all 1's.

Extensions

a(60) split into 5,1 by Georg Fischer, Aug 27 2023
Showing 1-6 of 6 results.