A061258 a(n) = Sum_{d|n} d*psi(d), where psi(d) is reduced totient function, cf. A002322.
1, 3, 7, 11, 21, 21, 43, 27, 61, 63, 111, 53, 157, 129, 87, 91, 273, 183, 343, 151, 175, 333, 507, 117, 521, 471, 547, 305, 813, 261, 931, 347, 447, 819, 483, 431, 1333, 1029, 631, 327, 1641, 525, 1807, 781, 681, 1521, 2163, 373, 2101, 1563, 1095, 1103, 2757
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a061258 n = sum $ zipWith (*) ds $ map a002322 ds where ds = a027750_row n -- Reinhard Zumkeller, Sep 02 2014
-
Mathematica
a[n_] := DivisorSum[n, # * CarmichaelLambda[#] &]; Array[a, 100] (* Amiram Eldar, Apr 13 2024 *)
-
PARI
a(n) = sumdiv(n, d, d * lcm(znstar(d)[2])); \\ Amiram Eldar, Apr 13 2024
Formula
a(n) = Sum_{k = 1..A000005(n)} (A027750(n,k)*A002322(A027750(n,k))). - Reinhard Zumkeller, Sep 02 2014