cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A002322 Reduced totient function psi(n): least k such that x^k == 1 (mod n) for all x prime to n; also known as the Carmichael lambda function (exponent of unit group mod n); also called the universal exponent of n.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 6, 2, 6, 4, 10, 2, 12, 6, 4, 4, 16, 6, 18, 4, 6, 10, 22, 2, 20, 12, 18, 6, 28, 4, 30, 8, 10, 16, 12, 6, 36, 18, 12, 4, 40, 6, 42, 10, 12, 22, 46, 4, 42, 20, 16, 12, 52, 18, 20, 6, 18, 28, 58, 4, 60, 30, 6, 16, 12, 10, 66, 16, 22, 12, 70, 6, 72, 36, 20, 18, 30, 12, 78, 4, 54
Offset: 1

Views

Author

Keywords

Comments

a(n) is the largest order of any element in the multiplicative group modulo n. - Joerg Arndt, Mar 19 2016
Largest period of repeating digits of 1/n written in different bases (i.e., largest value in each row of square array A066799 and least common multiple of each row). - Henry Bottomley, Dec 20 2001

References

  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, pp. 7-10.
  • W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 53.
  • Kenneth H. Rosen, Elementary Number Theory and Its Applications, Addison-Wesley, 1984, page 269.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a002322 n = foldl lcm 1 $ map (a207193 . a095874) $
                              zipWith (^) (a027748_row n) (a124010_row n)
    -- Reinhard Zumkeller, Feb 16 2012
    
  • Magma
    [1] cat [ CarmichaelLambda(n) : n in [2..100]];
    
  • Maple
    with(numtheory); A002322 := lambda; [seq(lambda(n), n=1..100)];
  • Mathematica
    Table[CarmichaelLambda[k], {k, 50}] (* Artur Jasinski, Apr 05 2008 *)
  • PARI
    A002322(n)= lcm( apply( f -> (f[1]-1)*f[1]^(f[2]-1-(f[1]==2 && f[2]>2)), Vec(factor(n)~))) \\ M. F. Hasler, Jul 05 2009
    
  • PARI
    a(n)=lcm(znstar(n)[2]) \\ Charles R Greathouse IV, Aug 04 2012
    
  • Python
    from sympy import reduced_totient
    def A002322(n): return reduced_totient(n) # Chai Wah Wu, Feb 24 2021

Formula

If M = 2^e*P1^e1*P2^e2*...*Pk^ek, lambda(2^e) = 2^(e-1) if e=1 or 2, = 2^(e-2) if e > 2; lambda(M) = lcm(lambda(2^e), (P1-1)*P1^(e1-1), (P2-1)*P2^(e2-1), ..., (Pk-1)*Pk^(ek-1)).
a(n) = lcm_{k=1..A001221(n)} A207193(A095874(A027748(n,k)^A124010(n,k))). - Reinhard Zumkeller, Feb 16 2012

A061257 Euler transform of reduced totient function psi(n), cf. A002322.

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 21, 37, 58, 96, 153, 243, 376, 584, 897, 1353, 2046, 3060, 4552, 6714, 9862, 14386, 20898, 30198, 43427, 62159, 88600, 125804, 177881, 250615, 351819, 492203, 686294, 953954, 1321902, 1826394, 2516364, 3457332, 4737576, 6475332
Offset: 0

Views

Author

Vladeta Jovovic, Apr 21 2001

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 20; b = Table[CarmichaelLambda[n], {n, nn}]; CoefficientList[Series[Product[1/(1 - x^m)^b[[m]], {m, nn}], {x, 0, nn}], x] (* T. D. Noe, Jun 19 2012 *)

Formula

G.f.: Product_{k=1..infinity} (1 - x^k)^(-psi(k)). a(n)=1/n*Sum_{k=1..n} a(n-k)*b(k), n>1, a(0)=1, b(k)=Sum_{d|k} d*psi(d), cf. A061258.

A141258 Inverse Mobius transform of the Carmichael lambda function.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 6, 9, 10, 11, 10, 13, 14, 11, 10, 17, 18, 19, 16, 15, 22, 23, 14, 25, 26, 27, 22, 29, 22, 31, 18, 23, 34, 23, 28, 37, 38, 27, 22, 41, 30, 43, 34, 29, 46, 47, 22, 49, 50, 35, 40, 53, 54, 35, 30, 39, 58, 59, 34, 61, 62, 27, 34, 29, 46, 67, 52, 47, 46, 71, 38
Offset: 1

Views

Author

Gary W. Adamson, Jun 18 2008

Keywords

Comments

n-th term = prime when n is prime.
This sequence is used in A131492 as an auxiliary sequence. - Reinhard Zumkeller, Feb 17 2012
a(n) = Sum_{k = 1..A000005(n)} A002322(A027750(n,k)). - Reinhard Zumkeller, Sep 02 2014

Examples

			a(6) = 6 = (1, 1, 1, 0, 0, 1) dot (1, 1, 2, 2, 4, 2) = (1 + 1 + 2 + 0 + 0 + 2); where (1, 1, 1, 0, 0, 1) = row 6 of triangle A051731.
		

Crossrefs

Programs

Formula

a(n) = Sum_{d|n} A002322(d).

Extensions

More terms from R. J. Mathar, Jan 19 2009

A061259 a(n)=Sum_{d|n} d*numbpart(d), where numbpart(d)=number of partitions of d, cf. A000041.

Original entry on oeis.org

1, 5, 10, 25, 36, 80, 106, 201, 280, 460, 617, 1024, 1314, 2000, 2685, 3897, 5050, 7280, 9311, 13020, 16747, 22665, 28866, 39000, 48986, 64654, 81550, 106124, 132386, 171295, 212103, 271065, 335345, 423594, 521046, 655396, 800570, 997885
Offset: 1

Views

Author

Vladeta Jovovic, Apr 21 2001

Keywords

Crossrefs

Programs

  • Haskell
    a061259 n = sum $ zipWith (*) divs $ map a000041 divs
                where divs = a027750_row' n
    -- Reinhard Zumkeller, Oct 31 2015
Showing 1-4 of 4 results.