cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A002322 Reduced totient function psi(n): least k such that x^k == 1 (mod n) for all x prime to n; also known as the Carmichael lambda function (exponent of unit group mod n); also called the universal exponent of n.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 6, 2, 6, 4, 10, 2, 12, 6, 4, 4, 16, 6, 18, 4, 6, 10, 22, 2, 20, 12, 18, 6, 28, 4, 30, 8, 10, 16, 12, 6, 36, 18, 12, 4, 40, 6, 42, 10, 12, 22, 46, 4, 42, 20, 16, 12, 52, 18, 20, 6, 18, 28, 58, 4, 60, 30, 6, 16, 12, 10, 66, 16, 22, 12, 70, 6, 72, 36, 20, 18, 30, 12, 78, 4, 54
Offset: 1

Views

Author

Keywords

Comments

a(n) is the largest order of any element in the multiplicative group modulo n. - Joerg Arndt, Mar 19 2016
Largest period of repeating digits of 1/n written in different bases (i.e., largest value in each row of square array A066799 and least common multiple of each row). - Henry Bottomley, Dec 20 2001

References

  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, pp. 7-10.
  • W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 53.
  • Kenneth H. Rosen, Elementary Number Theory and Its Applications, Addison-Wesley, 1984, page 269.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a002322 n = foldl lcm 1 $ map (a207193 . a095874) $
                              zipWith (^) (a027748_row n) (a124010_row n)
    -- Reinhard Zumkeller, Feb 16 2012
    
  • Magma
    [1] cat [ CarmichaelLambda(n) : n in [2..100]];
    
  • Maple
    with(numtheory); A002322 := lambda; [seq(lambda(n), n=1..100)];
  • Mathematica
    Table[CarmichaelLambda[k], {k, 50}] (* Artur Jasinski, Apr 05 2008 *)
  • PARI
    A002322(n)= lcm( apply( f -> (f[1]-1)*f[1]^(f[2]-1-(f[1]==2 && f[2]>2)), Vec(factor(n)~))) \\ M. F. Hasler, Jul 05 2009
    
  • PARI
    a(n)=lcm(znstar(n)[2]) \\ Charles R Greathouse IV, Aug 04 2012
    
  • Python
    from sympy import reduced_totient
    def A002322(n): return reduced_totient(n) # Chai Wah Wu, Feb 24 2021

Formula

If M = 2^e*P1^e1*P2^e2*...*Pk^ek, lambda(2^e) = 2^(e-1) if e=1 or 2, = 2^(e-2) if e > 2; lambda(M) = lcm(lambda(2^e), (P1-1)*P1^(e1-1), (P2-1)*P2^(e2-1), ..., (Pk-1)*Pk^(ek-1)).
a(n) = lcm_{k=1..A001221(n)} A207193(A095874(A027748(n,k)^A124010(n,k))). - Reinhard Zumkeller, Feb 16 2012

A061258 a(n) = Sum_{d|n} d*psi(d), where psi(d) is reduced totient function, cf. A002322.

Original entry on oeis.org

1, 3, 7, 11, 21, 21, 43, 27, 61, 63, 111, 53, 157, 129, 87, 91, 273, 183, 343, 151, 175, 333, 507, 117, 521, 471, 547, 305, 813, 261, 931, 347, 447, 819, 483, 431, 1333, 1029, 631, 327, 1641, 525, 1807, 781, 681, 1521, 2163, 373, 2101, 1563, 1095, 1103, 2757
Offset: 1

Views

Author

Vladeta Jovovic, Apr 21 2001

Keywords

Crossrefs

Programs

  • Haskell
    a061258 n = sum $ zipWith (*) ds $ map a002322 ds
                where ds = a027750_row n
    -- Reinhard Zumkeller, Sep 02 2014
    
  • Mathematica
    a[n_] := DivisorSum[n, # * CarmichaelLambda[#] &]; Array[a, 100] (* Amiram Eldar, Apr 13 2024 *)
  • PARI
    a(n) = sumdiv(n, d, d * lcm(znstar(d)[2])); \\ Amiram Eldar, Apr 13 2024

Formula

a(n) = Sum_{k = 1..A000005(n)} (A027750(n,k)*A002322(A027750(n,k))). - Reinhard Zumkeller, Sep 02 2014

A131492 Numbers n such that the sum of the Carmichael lambda functions of the divisors is a proper divisor of n.

Original entry on oeis.org

140, 189, 378, 1375, 2750, 2775, 2997, 4524, 5550, 5661, 5994, 6375, 11253, 11322, 12750, 13416, 13505, 22506, 25925, 27010, 27511, 30613, 32208, 32513, 32760, 45917, 49665, 49959, 51850, 55022, 61061, 61226, 65026, 67488, 91834, 93605
Offset: 1

Views

Author

R. J. Mathar, Jul 29 2007

Keywords

Comments

The auxiliary sequence defined by b(n)=sum_{d|n} A002322(d) starts 1,2,3,4,5,6,7,6,9,10,11,10,13,14,11,10,17,18,19,16,...
The auxiliary sequence is A141258. [Reinhard Zumkeller, Feb 17 2012]

Crossrefs

Programs

  • Mathematica
    Select[ Range[100000], Divisible[#, s = Total[ CarmichaelLambda /@ Divisors[#]]] && s < # &] (* Jean-François Alcover, Jun 24 2013 *)
  • PARI
    lambda(p,alpha)={ if(p>=3 || alpha<=2, return(p^(alpha-1)*(p-1)), return(2^(alpha-2)) ; ) ; } A002322(n)={ local(pf,rmax,resul) ; if(n==1, return(1) ) ; pf=factor(n) ; rmax=matsize(pf)[1] ; resul= lambda(pf[1,1],pf[1,2]) ; for(r=2,rmax, resul=lcm(resul,lambda(pf[r,1],pf[r,2])) ; ) ; return(resul) ; } b(n)={ sumdiv(n,d,A002322(d)) ; } { for(n=1,120000, l=b(n) ; if( l != 1 && l != n && n%l==0, print1(n,",") ) ; ) ; }

Formula

n such that (sum_{d|n} A002322(d)) | n.

A239641 Dirichlet inverse of Carmichael lambda function (A002322).

Original entry on oeis.org

1, -1, -2, -1, -4, 2, -6, 1, -2, 4, -10, 4, -12, 6, 12, -1, -16, 2, -18, 8, 18, 10, -22, -4, -4, 12, -2, 12, -28, -12, -30, -3, 30, 16, 36, 0, -36, 18, 36, -8, -40, -18, -42, 20, 4, 22, -46, 0, -6, 4, 48, 24, -52, 2, 60, -12, 54, 28, -58, -40, -60, 30, 18, -1, 84, -30, -66, 32, 66, -36, -70, 0
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    inverse[F_][1] := 1/F[1]; inverse[F_][n_] := -1/F[1] Sum[F[n/Divisors[n][[i]]]*inverse[F][Divisors[n][[i]]], {i, Length[Divisors[n]] - 1}];Table[inverse[CarmichaelLambda][n], {n, 1, 331}];
  • PARI
    seq(n)={dirdiv(vector(n, n, n==1), vector(n, n, lcm(znstar(n).cyc)))} \\ Andrew Howroyd, Aug 05 2018
Showing 1-4 of 4 results.