cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A061271 Duplicate of A061269.

Original entry on oeis.org

1, 4, 9, 144, 441, 44944
Offset: 1

Views

Author

Keywords

A006716 Squares with digits 1, 4, 9.

Original entry on oeis.org

1, 4, 9, 49, 144, 441, 1444, 11449, 44944, 991494144, 4914991449, 149991994944, 9141411499911441, 199499144494999441, 9914419419914449449, 444411911999914911441, 419994999149149944149149944191494441
Offset: 1

Views

Author

N. J. A. Sloane, revised Jul 10 2015

Keywords

Comments

This is probably a finite sequence, but that is only a conjecture.
Since 1, 4 and 9 are squares, all terms are in A053059. - Rabii Younès, Mar 17 2025

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. Vardi, Computational Recreations in Mathematica. Addison-Wesley, Redwood City, CA, 1991, p. 234.

Crossrefs

Subsequence of A019544 and A053059.
Cf. A027675 (square roots), A061269.
For other digit groups {0,1,2} through {7,8,9}, see also: A058411, ..., A058472, A058473, A058474.

Formula

a(n) = A027675(n)^2. - M. F. Hasler, Nov 15 2017

Extensions

a(13) corrected by Neven Juric (neven.juric(AT)apis-it.hr), May 14 2003

A061270 Squares such that each digit is a square and the sum of the digits is a square.

Original entry on oeis.org

0, 1, 4, 9, 100, 144, 400, 441, 900, 10000, 10404, 14400, 40000, 40401, 44100, 44944, 90000, 1000000, 1004004, 1040400, 1440000, 4000000, 4004001, 4040100, 4410000, 4494400, 9000000, 9941409, 11909401, 100000000, 100040004, 100400400
Offset: 1

Views

Author

Amarnath Murthy, Apr 24 2001

Keywords

Examples

			44944 = 212^2, each digit is a square, sum of digits = 4 + 4 + 9 + 4 + 4 = 25 = 5^2.
		

References

  • Amarnath Murthy, Smarandache Additive square sequence is infinite. (To be published in Smarandache Notions Journal.)
  • Amarnath Murthy, Infinitely many common members of the Smarandache Additive as well as multiplicative square sequence. (To be published in Smarandache Notions Journal.)
  • Felice Russo, A set of new Smarandache functions, sequences and conjectures in number theory, American Research Press 2000.

Crossrefs

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 11 2001
a(1)=0 inserted by Sean A. Irvine, Jan 29 2023

A061272 Squares such that (1) each digit is a square, (2) the sum of squares of the digits is a square.

Original entry on oeis.org

0, 1, 4, 9, 100, 400, 900, 1444, 10000, 40000, 90000, 144400, 1000000, 4000000, 9000000, 14440000, 94109401, 100000000, 400000000, 900000000, 1444000000, 9410940100, 10000000000, 10100049001, 40000000000, 90000000000, 144400000000, 414441100441, 941094010000
Offset: 1

Views

Author

Amarnath Murthy, Apr 24 2001

Keywords

Examples

			1444 = 38^2, each digit is a square, Sum of the squares of digits = 1+16+16+16 = 49 = 7^2.
		

References

  • Amarnath Murthy, Smarandache Pythagoras Additive Square Sequence. (To be published in Smarandache Notions Journal).

Crossrefs

Programs

  • Mathematica
    okQ[n_]:=Module[{fd=FromDigits[n]},IntegerQ[Sqrt[fd]]&&IntegerQ[ Sqrt[ Total[n^2]]]]; FromDigits/@Select[Tuples[{0,1,4,9},8],okQ] (* Harvey P. Dale, May 12 2011 *)

Extensions

Corrected and extended by Harvey P. Dale, May 12 2011
More terms from Jason Yuen, Aug 27 2025
Showing 1-4 of 4 results.