cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A283262 Numbers m such that tau(m^2) is a prime.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227
Offset: 1

Views

Author

Jaroslav Krizek, Mar 08 2017

Keywords

Comments

tau(m) is the number of positive divisors of m (A000005).
Numbers m such that A000005(A000290(m)) = A048691(m) is a prime.
Union of A000040 (primes) and A051676.
Supersequence of A055638 (sigma(m^2) is prime).
Subsequence of A000961 (powers of primes).
Prime powers p^e with 2e+1 prime (e >= 1).
See A061285(m) = the smallest number k such that tau(k^2) = m-th prime.

Examples

			tau(4^2) = tau(16) = 5 (prime).
		

Crossrefs

Programs

  • Magma
    [n: n in [2..100000] | IsPrime(NumberOfDivisors(n^2))];
    
  • Maple
    N:= 1000: # to get all terms <= N
    es:= select(t -> isprime(2*t+1), [$1..ilog2(N)]):
    Ps:= select(isprime, [2,seq(i,i=3..N,2)]):
    sort(select(`<=`, [seq(seq(p^e,e=es),p=Ps)],N)): # Robert Israel, Mar 16 2017
  • Mathematica
    Select[Range@ 227, PrimeQ[DivisorSigma[0, #^2]] &] (* Michael De Vlieger, Mar 09 2017 *)
  • PARI
    isok(n)=isprime(numdiv(n^2)) \\ Indranil Ghosh, Mar 09 2017

A104137 Number of distinct necklaces with p beads of two possible colors, allowing turning over, p being a prime greater than 2.

Original entry on oeis.org

4, 8, 18, 126, 380, 4112, 14310, 184410, 9272780, 34669602, 1857545300, 26818405352, 102282248574, 1497215711538, 84973644983780, 4885261149611790, 18900353608280300, 1101298162244236182, 16628051030379615882
Offset: 1

Views

Author

Lekraj Beedassy, Mar 07 2005

Keywords

Comments

For the general necklace problem, see A000029.

References

  • Martin Gardner, The Colossal Book of Mathematics, pp. 19, W. W. Norton & Co., NY 2001 (or, New Mathematical Diversions, pp. 243-4 MAA Washington DC 1995).

Crossrefs

Cf. A000029.

Programs

  • Maple
    for p from 2 to 30 do printf(`%d,`,(2^(ithprime(p)-1)-1)/ithprime(p) + 2^((ithprime(p)-1)/2) + 1) od: # James Sellers, Apr 10 2005

Formula

a(n) = (2^(p-1) - 1)/p + 2^{(p-1)/2} + 1 = A007663(n) + A061285(n) + 1.

Extensions

More terms from James Sellers, Apr 10 2005

A133155 Numbers formed by setting bits representing odd primes, where bit_no = (prime - 1)/2. Setting bit number b is the same as OR-ing with 2^b (i.e., bit numbers start at zero).

Original entry on oeis.org

2, 6, 14, 46, 110, 366, 878, 2926, 19310, 52078, 314222, 1362798, 3459950, 11848558, 78957422, 615828334, 1689570158, 10279504750, 44639243118, 113358719854, 663114533742, 2862137789294, 20454323833710, 301929300544366, 1427829207386990, 3679629021072238
Offset: 1

Views

Author

Alan Griffiths, Oct 08 2007

Keywords

Examples

			a(3) = 14 because 3, 5 and 7 are odd primes so therefore bits 1, 2 and 3 are set and bit zero is not. 1110_2 = 14.
		

Crossrefs

Partial sums of A061285.

Programs

  • Python
    import gmpy
    a = gmpy.mpz(0)
    i = 0
    for p in range(3,100,2):
        if gmpy.is_prime(p):
            a = gmpy.setbit(a,(p-1)/2)
            i += 1
            print(i,a)

Formula

a(n) = setbit(a(n-1),(p-1)/2) where p is the n-th odd prime.
Showing 1-3 of 3 results.