cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A137379 Number of primes between (n + 1)^Pi and n^Pi.

Original entry on oeis.org

0, 4, 7, 10, 15, 23, 28, 37, 43, 54, 64, 78, 83, 103, 113, 128, 145, 159, 180, 186, 215, 237, 244, 277, 296, 313, 340, 369, 384, 417, 430, 472, 504, 515, 550, 590, 620, 641, 686, 706, 746, 789, 812, 857, 902, 918, 964, 1016, 1043, 1095, 1149, 1158, 1213, 1276
Offset: 0

Views

Author

Keywords

Examples

			0 primes between: 0^Pi and 1^Pi (between: 0 and 1);
4 primes between: 1^Pi and 2^Pi (between: 1 and 8.82..);
7 primes between: 2^Pi and 3^Pi (between: 8.82.. and 31.54..);
		

Programs

Formula

a(n) = A000720(A061294(n+1)) - A000720(A061294(n)). - R. J. Mathar, Apr 16 2008

Extensions

More terms from R. J. Mathar, Apr 16 2008

A235361 Floor((n + Pi)^2).

Original entry on oeis.org

9, 17, 26, 37, 51, 66, 83, 102, 124, 147, 172, 199, 229, 260, 293, 329, 366, 405, 446, 490, 535, 582, 632, 683, 736, 791, 849, 908, 969, 1033, 1098, 1165, 1234, 1306, 1379, 1454, 1532, 1611, 1692, 1775, 1861, 1948, 2037, 2129, 2222, 2317, 2414, 2514, 2615
Offset: 0

Views

Author

Alex Ratushnyak, Jan 07 2014

Keywords

Examples

			a(1) = floor((Pi + 1)^2) = floor(17.1527897...) = 17.
		

Crossrefs

Programs

  • Mathematica
    Table[Floor[(n + Pi)^2], {n, 0, 49}] (* Alonso del Arte, Jan 07 2014 *)
  • PARI
    a(n) = floor((n+Pi)^2); \\ Michel Marcus, Jan 07 2014
Showing 1-2 of 2 results.