A061371 Composite numbers with all prime digits.
22, 25, 27, 32, 33, 35, 52, 55, 57, 72, 75, 77, 222, 225, 232, 235, 237, 252, 253, 255, 272, 273, 275, 322, 323, 325, 327, 332, 333, 335, 352, 355, 357, 372, 375, 377, 522, 525, 527, 532, 533, 535, 537, 552, 553, 555, 572, 573, 575, 722, 723, 725, 732, 735
Offset: 1
Examples
35 is composite with digits 3 and 5 which are primes. 22 is composite and has prime digits, twice 2; 573 is composite and has prime digits, 3, 5 and 7.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A061372.
Programs
-
Magma
[ n: n in [22..736] | not IsPrime(n) and Set(Intseq(n)) subset [2,3,5,7] ]; // Bruno Berselli, Dec 21 2011
-
Maple
stev_sez:=proc(n) local i, tren, st, ans, anstren; ans:=[ ]: anstren:=[ ]: tren:=n: for i while (tren>0) do st:=round( 10*frac(tren/10) ): ans:=[ op(ans), st ]: tren:=trunc(tren/10): end do; for i from nops(ans) to 1 by -1 do anstren:=[ op(anstren), op(i,ans) ]; od; RETURN(anstren); end: ts_stnepf:=proc(n) local i, stpf, ans; ans:=stev_sez(n): stpf:=0: for i from 1 to nops(ans) do if (isprime(op(i,ans))='false') then stpf:=stpf+1; # number of nonprime digits fi od; RETURN(stpf) end: ts_nepr_neprn0:=proc(n) local i, stpf, ans, ans1, tren; ans:=[ ]: stpf:=0: tren:=1: for i from 1 to n do if ( isprime(i)='false' and ts_stnepf(i) = 0) then ans:=[ op(ans), i ]: tren:=tren+1; fi od; RETURN(ans) end: ts_nepr_neprn0(4000); # Jani Melik, Apr 11 2004
-
Mathematica
With[{comps=Complement[Range[1000],Prime[Range[PrimePi[1000]]]]}, Select[ comps, And@@PrimeQ[IntegerDigits[#]]&]] (* Harvey P. Dale, Dec 21 2011 *) Table[Select[FromDigits/@Tuples[{2,3,5,7},n],CompositeQ],{n,2,4}]//Flatten (* Harvey P. Dale, Oct 05 2019 *)
-
Python
from sympy import isprime from itertools import count, islice, product def agen(): yield from (t for d in count(2) for p in product("2357", repeat=d) if not isprime(t:=int("".join(p)))) print(list(islice(agen(), 54))) # Michael S. Branicky, Jun 30 2025
Extensions
Corrected and extended by Larry Reeves (larryr(AT)acm.org), May 08 2001