cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061389 Number of (1+phi)-divisors of n.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 3, 2, 4, 2, 4, 2, 4, 4, 3, 2, 4, 2, 4, 4, 4, 2, 6, 2, 4, 3, 4, 2, 8, 2, 5, 4, 4, 4, 4, 2, 4, 4, 6, 2, 8, 2, 4, 4, 4, 2, 6, 2, 4, 4, 4, 2, 6, 4, 6, 4, 4, 2, 8, 2, 4, 4, 3, 4, 8, 2, 4, 4, 8, 2, 6, 2, 4, 4, 4, 4, 8, 2, 6, 3, 4, 2, 8, 4, 4, 4, 6, 2, 8, 4, 4, 4, 4, 4, 10, 2, 4, 4, 4, 2, 8, 2, 6
Offset: 1

Views

Author

Vladeta Jovovic, Apr 29 2001

Keywords

Comments

d is called a (1+phi)-divisor of a number n with prime factorization n = Product p(i)^r(i) if d|n and d = Product p(i)^s(i), where s(i)=0 or GCD(s(i),r(i))=1.
a(n) is odd iff n is a 3-full number (cf. A036966).

Crossrefs

Programs

  • Haskell
    a061389 = product . map ((+ 1) . a000010 . fromIntegral) . a124010_row
    -- Reinhard Zumkeller, Mar 13 2012
  • Mathematica
    f[p_, e_] := EulerPhi[e] + 1; a[1] = 1; a[n_] := Times @@ ( f @@@ FactorInteger[n] ); Array[a, 100] (* Amiram Eldar, Aug 30 2019*)

Formula

Multiplicative with a(p^e) = A000010(e)+1.