cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061391 a(n) = t(n,3) = Sum_{d|n} tau(d^3), where tau(n) = number of divisors of n, cf. A000005.

Original entry on oeis.org

1, 5, 5, 12, 5, 25, 5, 22, 12, 25, 5, 60, 5, 25, 25, 35, 5, 60, 5, 60, 25, 25, 5, 110, 12, 25, 22, 60, 5, 125, 5, 51, 25, 25, 25, 144, 5, 25, 25, 110, 5, 125, 5, 60, 60, 25, 5, 175, 12, 60, 25, 60, 5, 110, 25, 110, 25, 25, 5, 300, 5, 25, 60, 70, 25, 125, 5, 60, 25, 125, 5, 264
Offset: 1

Views

Author

Vladeta Jovovic, Apr 29 2001

Keywords

Comments

Inverse Mobius transform of A048785. - R. J. Mathar, Feb 09 2011

Crossrefs

Cf. t(n, 0) = A000005(n), t(n, 1) = A007425(n), t(n, 2) = A035116(n).
Cf. A048691.

Programs

  • Mathematica
    f[p_, e_] := (3*e^2 + 5*e + 2)/2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 16 2020 *)
  • PARI
    A061391 = n -> sumdiv(n, d, numdiv(d^3));
    for(n=1, 10000, write("b061391.txt", n, " ", A061391(n)));
    \\ Antti Karttunen, Jan 17 2017
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + 2*X)/(1 - X)^3)[n], ", ")) \\ Vaclav Kotesovec, May 15 2021
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - 3*X^2 + 2*X^3)/(1 - X)^5)[n], ", ")) \\ Vaclav Kotesovec, Aug 20 2021

Formula

t(n, k) = Sum_{d|n} tau(d^k) is multiplicative: if the canonical factorization of n = Product p^e(p) over primes then t(n, k) = Product t(p^e(p), k), t(p^e(p), k) = (1/2) *(k*e(p)+2)*(e(p)+1).
For k=2 we get an interesting identity: Sum_{d|n} tau(d^2)=(tau(n))^2, cf. A048691, A035116.
a(n) = Sum_{d|n} tau(n*d). - Benoit Cloitre, Nov 30 2002
G.f.: Sum_{n>=1} tau(n^3)*x^n/(1-x^n). - Joerg Arndt, Jan 01 2011
Dirichlet g.f.: zeta(s)^3 * Product_{primes p} (1 + 2/p^s). - Vaclav Kotesovec, May 15 2021
Dirichlet g.f.: zeta(s)^5 * Product_{primes p} (1 - 3/p^(2*s) + 2/p^(3*s)). - Vaclav Kotesovec, Aug 20 2021