cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A061394 Number of distinct prime factors of n-th least prime signature (A025487); also a(n)-th prime is largest prime factor of n-th least prime signature; also a(n)-th primorial number is largest primorial factor of n-th least product of primorial numbers.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 2, 3, 1, 2, 2, 3, 1, 2, 2, 3, 1, 2, 3, 2, 4, 2, 3, 1, 2, 3, 2, 4, 2, 3, 1, 2, 3, 2, 4, 2, 3, 3, 1, 3, 2, 4, 2, 3, 2, 4, 2, 3, 3, 1, 3, 2, 5, 4, 2, 3, 2, 4, 2, 3, 3, 1, 3, 2, 5, 4, 2, 3, 3, 2, 4, 3, 4, 2, 3, 4, 3, 2, 1, 3, 2, 5, 4, 2, 3, 3, 2, 4, 3, 4, 2, 5, 3, 4, 3, 2, 1, 3, 2, 5, 4, 2, 3, 3
Offset: 1

Views

Author

Henry Bottomley, Apr 30 2001

Keywords

Comments

A002110(a(n)) = A247451(n). - Reinhard Zumkeller, Sep 17 2014
Number of parts of the associated prime signature. - Álvar Ibeas, Nov 01 2014

Crossrefs

Cf. A002110, A247451, A006530, A061395, A025487, A000040, A051903. A001221 by prime signature.

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a061394 = fromJust . (`elemIndex` a002110_list) . a247451
    -- Reinhard Zumkeller, Sep 17 2014
    
  • PARI
    isA025487(n)=my(k=valuation(n, 2), t); n>>=k; forprime(p=3, default(primelimit), t=valuation(n, p); if(t>k, return(0), k=t); if(k, n/=p^k, return(n==1)))
    [omega(n) | n <- [1..1000], isA025487(n)]
    \\ Or, for older versions:
    apply(omega, select(isA025487, [1..1000])) \\ Charles R Greathouse IV, Nov 07 2014

Formula

a(n) = A061395(A025487(n)) = A001221(A025487(n)) = A051903(A181822(n)).
A000040(a(n)) = A006530(A025487(n)).

Extensions

Offset updated by Matthew Vandermast, Nov 08 2008