cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A146290 Triangle T(n,m) read by rows (n >= 1, 0 <= m <= A061394(n)), giving the number of divisors of A025487(n) with m distinct prime factors.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 1, 3, 2, 1, 4, 1, 4, 3, 1, 3, 3, 1, 1, 5, 1, 4, 4, 1, 5, 4, 1, 4, 5, 2, 1, 6, 1, 5, 6, 1, 6, 5, 1, 5, 7, 3, 1, 7, 1, 6, 8, 1, 5, 8, 4, 1, 7, 6, 1, 4, 6, 4, 1, 1, 6, 9, 1, 6, 9, 4, 1, 8, 1, 7, 10, 1, 6, 11, 6, 1, 8, 7, 1, 5, 9, 7, 2, 1, 7, 12, 1, 7, 11, 5, 1, 9, 1, 8, 12, 1, 7, 14
Offset: 1

Views

Author

Matthew Vandermast, Nov 11 2008

Keywords

Comments

The formula used in obtaining the A025487(n)th row (see below) also gives the number of divisors of the k-th power of A025487(n).
Every row that appears in A146289 appears exactly once in the table. Rows appear in order of first appearance in A146289.
T(n,0)=1.

Examples

			Rows begin:
  1;
  1,1;
  1,2;
  1,2,1;
  1,3;
  1,3,2;
  1,4;
  1,4,3;...
36's 9 divisors include 1 divisor with 0 distinct prime factors (1); 4 with 1 (2, 3, 4 and 9); and 4 with 2 (6, 12, 18 and 36). Since 36 = A025487(11), the 11th row of the table therefore reads (1, 4, 4). These are the positive coefficients of the polynomial equation 1 + 4k + 4k^2 = (1 + 2k)(1 + 2k), derived from the prime factorization of 36 (namely, 2^2*3^2).
		

Crossrefs

For the number of distinct prime factors of n, see A001221.
Row sums equal A146288(n). T(n, 1)=A036041(n) for n>1. T(n, A061394(n))=A052306(n).
Row A098719(n) of this table is identical to row n of A007318.
Cf. A146289. Also cf. A146291, A146292.

Formula

If A025487(n)'s canonical factorization into prime powers is Product p^e(p), then T(n, m) is the coefficient of k^m in the polynomial expansion of Product_p (1 + ek).

A025487 Least integer of each prime signature A124832; also products of primorial numbers A002110.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, 180, 192, 210, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 576, 720, 768, 840, 864, 900, 960, 1024, 1080, 1152, 1260, 1296, 1440, 1536, 1680, 1728, 1800, 1920, 2048, 2160, 2304, 2310
Offset: 1

Views

Author

Keywords

Comments

All numbers of the form 2^k1*3^k2*...*p_n^k_n, where k1 >= k2 >= ... >= k_n, sorted.
A111059 is a subsequence. - Reinhard Zumkeller, Jul 05 2010
Choie et al. (2007) call these "Hardy-Ramanujan integers". - Jean-François Alcover, Aug 14 2014
The exponents k1, k2, ... can be read off Abramowitz & Stegun p. 831, column labeled "pi".
For all such sequences b for which it holds that b(n) = b(A046523(n)), the sequence which gives the indices of records in b is a subsequence of this sequence. For example, A002182 which gives the indices of records for A000005, A002110 which gives them for A001221 and A000079 which gives them for A001222. - Antti Karttunen, Jan 18 2019
The prime signature corresponding to a(n) is given in row n of A124832. - M. F. Hasler, Jul 17 2019

Examples

			The first few terms are 1, 2, 2^2, 2*3, 2^3, 2^2*3, 2^4, 2^3*3, 2*3*5, ...
		

Crossrefs

Subsequence of A055932, A191743, and A324583.
Cf. A085089, A101296 (left inverses).
Equals range of values taken by A046523.
Cf. A178799 (first differences), A247451 (squarefree kernel), A146288 (number of divisors).
Rearrangements of this sequence include A036035, A059901, A063008, A077569, A085988, A086141, A087443, A108951, A181821, A181822, A322827, A329886, A329887.
Cf. also array A124832 (row n = prime signature of a(n)) and A304886, A307056.

Programs

  • Haskell
    import Data.Set (singleton, fromList, deleteFindMin, union)
    a025487 n = a025487_list !! (n-1)
    a025487_list = 1 : h [b] (singleton b) bs where
       (_ : b : bs) = a002110_list
       h cs s xs'@(x:xs)
         | m <= x    = m : h (m:cs) (s' `union` fromList (map (* m) cs)) xs'
         | otherwise = x : h (x:cs) (s  `union` fromList (map (* x) (x:cs))) xs
         where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Apr 06 2013
    
  • Maple
    isA025487 := proc(n)
        local pset,omega ;
        pset := sort(convert(numtheory[factorset](n),list)) ;
        omega := nops(pset) ;
        if op(-1,pset) <> ithprime(omega) then
            return false;
        end if;
        for i from 1 to omega-1 do
            if padic[ordp](n,ithprime(i)) < padic[ordp](n,ithprime(i+1)) then
                return false;
            end if;
        end do:
        true ;
    end proc:
    A025487 := proc(n)
        option remember ;
        local a;
        if n = 1 then
            1 ;
        else
            for a from procname(n-1)+1 do
                if isA025487(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A025487(n),n=1..100) ; # R. J. Mathar, May 25 2017
  • Mathematica
    PrimeExponents[n_] := Last /@ FactorInteger[n]; lpe = {}; ln = {1}; Do[pe = Sort@PrimeExponents@n; If[ FreeQ[lpe, pe], AppendTo[lpe, pe]; AppendTo[ln, n]], {n, 2, 2350}]; ln (* Robert G. Wilson v, Aug 14 2004 *)
    (* Second program: generate all terms m <= A002110(n): *)
    f[n_] := {{1}}~Join~
      Block[{lim = Product[Prime@ i, {i, n}],
       ww = NestList[Append[#, 1] &, {1}, n - 1], dec},
       dec[x_] := Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, x]];
       Map[Block[{w = #, k = 1},
          Sort@ Prepend[If[Length@ # == 0, #, #[[1]]],
            Product[Prime@ i, {i, Length@ w}] ] &@ Reap[
             Do[
              If[# < lim,
                 Sow[#]; k = 1,
                 If[k >= Length@ w, Break[], k++]] &@ dec@ Set[w,
                 If[k == 1,
                   MapAt[# + 1 &, w, k],
                   PadLeft[#, Length@ w, First@ #] &@
                     Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1] ]],
               {i, Infinity}] ][[-1]]
    ] &, ww]]; Sort[Join @@ f@ 13] (* Michael De Vlieger, May 19 2018 *)
  • PARI
    isA025487(n)=my(k=valuation(n,2),t);n>>=k;forprime(p=3,default(primelimit),t=valuation(n,p);if(t>k,return(0),k=t);if(k,n/=p^k,return(n==1))) \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    factfollow(n)={local(fm, np, n2);
      fm=factor(n); np=matsize(fm)[1];
      if(np==0,return([2]));
      n2=n*nextprime(fm[np,1]+1);
      if(np==1||fm[np,2]Franklin T. Adams-Watters, Dec 01 2011 */
    
  • PARI
    is(n) = {if(n==1, return(1)); my(f = factor(n));  f[#f~, 1] == prime(#f~) && vecsort(f[, 2],,4) == f[, 2]} \\ David A. Corneth, Feb 14 2019
    
  • PARI
    upto(Nmax)=vecsort(concat(vector(logint(Nmax,2),n,select(t->t<=Nmax,if(n>1,[factorback(primes(#p),Vecrev(p)) || p<-partitions(n)],[1,2]))))) \\ M. F. Hasler, Jul 17 2019
    
  • PARI
    \\ For fast generation of large number of terms, use this program:
    A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980
    A025487list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t); while(lista[i] != u, if(2*lista[i] <= u, listput(lista,2*lista[i]); t = A283980(lista[i]); if(t <= u, listput(lista,t))); i++); vecsort(Vec(lista)); }; \\ Returns a list of terms up to the term 2^e.
    v025487 = A025487list(101);
    A025487(n) = v025487[n];
    for(n=1,#v025487,print1(A025487(n), ", ")); \\ Antti Karttunen, Dec 24 2019
    
  • Sage
    def sharp_primorial(n): return sloane.A002110(prime_pi(n))
    N = 2310
    nmax = 2^floor(log(N,2))
    sorted([j for j in (prod(sharp_primorial(t[0])^t[1] for k, t in enumerate(factor(n))) for n in (1..nmax)) if j <= N])
    # Giuseppe Coppoletta, Jan 26 2015

Formula

What can be said about the asymptotic behavior of this sequence? - Franklin T. Adams-Watters, Jan 06 2010
Hardy & Ramanujan prove that there are exp((2 Pi + o(1))/sqrt(3) * sqrt(log x/log log x)) members of this sequence up to x. - Charles R Greathouse IV, Dec 05 2012
From Antti Karttunen, Jan 18 & Dec 24 2019: (Start)
A085089(a(n)) = n.
A101296(a(n)) = n [which is the first occurrence of n in A101296, and thus also a record.]
A001221(a(n)) = A061395(a(n)) = A061394(n).
A007814(a(n)) = A051903(a(n)) = A051282(n).
a(A101296(n)) = A046523(n).
a(A306802(n)) = A002182(n).
a(n) = A108951(A181815(n)) = A329900(A181817(n)).
If A181815(n) is odd, a(n) = A283980(a(A329904(n))), otherwise a(n) = 2*a(A329904(n)).
(End)
Sum_{n>=1} 1/a(n) = Product_{n>=1} 1/(1 - 1/A002110(n)) = A161360. - Amiram Eldar, Oct 20 2020

Extensions

Offset corrected by Matthew Vandermast, Oct 19 2008
Minor correction by Charles R Greathouse IV, Sep 03 2010

A061395 Let p be the largest prime factor of n; if p is the k-th prime then set a(n) = k; a(1) = 0 by convention.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 4, 1, 2, 3, 5, 2, 6, 4, 3, 1, 7, 2, 8, 3, 4, 5, 9, 2, 3, 6, 2, 4, 10, 3, 11, 1, 5, 7, 4, 2, 12, 8, 6, 3, 13, 4, 14, 5, 3, 9, 15, 2, 4, 3, 7, 6, 16, 2, 5, 4, 8, 10, 17, 3, 18, 11, 4, 1, 6, 5, 19, 7, 9, 4, 20, 2, 21, 12, 3, 8, 5, 6, 22, 3, 2, 13, 23, 4, 7, 14, 10, 5, 24, 3, 6, 9, 11, 15
Offset: 1

Views

Author

Henry Bottomley, Apr 30 2001

Keywords

Comments

Records occur at the primes. - Robert G. Wilson v, Dec 30 2007
For n > 1: length of n-th row in A067255. - Reinhard Zumkeller, Jun 11 2013
a(n) = the largest part of the partition having Heinz number n. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436. Example: a(20) = 3; indeed, the partition having Heinz number 20 = 2*2*5 is [1,1,3]. - Emeric Deutsch, Jun 04 2015

Examples

			a(20) = 3 since the largest prime factor of 20 is 5, which is the 3rd prime.
		

Crossrefs

Programs

  • Haskell
    a061395 = a049084 . a006530  -- Reinhard Zumkeller, Jun 11 2013
    
  • Maple
    with(numtheory):
    a:= n-> pi(max(1, factorset(n)[])):
    seq(a(n), n=1..100);  # Alois P. Heinz, Aug 03 2013
  • Mathematica
    Insert[Table[PrimePi[FactorInteger[n][[ -1]][[1]]], {n, 2, 120}], 0, 1] (* Stefan Steinerberger, Apr 11 2006 *)
    f[n_] := PrimePi[ FactorInteger@n][[ -1, 1]]; Array[f, 94] (* Robert G. Wilson v, Dec 30 2007 *)
  • PARI
    a(n) = if (n==1, 0, primepi(vecmax(factor(n)[,1]))); \\ Michel Marcus, Nov 14 2022
    
  • Python
    from sympy import primepi, primefactors
    def a(n): return 0 if n==1 else primepi(primefactors(n)[-1])
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, May 14 2017

Formula

A000040(a(n)) = A006530(n); a(n) = A049084(A006530(n)). - Reinhard Zumkeller, May 22 2003
A243055(n) = a(n) - A055396(n). - Antti Karttunen, Mar 07 2017
a(n) = A000720(A006530(n)). - Alois P. Heinz, Mar 05 2020
a(n) = A029837(A087207(n)+1). - Flávio V. Fernandes, Apr 24 2025

Extensions

Definition reworded by N. J. A. Sloane, Jul 01 2008

A124832 Table of exponents of prime factorizations in A025487.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 4, 3, 1, 1, 1, 1, 5, 2, 2, 4, 1, 2, 1, 1, 6, 3, 2, 5, 1, 3, 1, 1, 7, 4, 2, 2, 2, 1, 6, 1, 1, 1, 1, 1, 3, 3, 4, 1, 1, 8, 5, 2, 3, 2, 1, 7, 1, 2, 1, 1, 1, 4, 3, 5, 1, 1, 9, 6, 2, 4, 2, 1, 8, 1, 3, 1, 1, 1, 5, 3, 2, 2, 2, 6, 1, 1, 10, 3, 3, 1, 7, 2, 2, 2, 1, 1, 4, 4, 5, 2, 1, 9, 1, 4, 1, 1, 1, 6
Offset: 2

Views

Author

Keywords

Comments

This is an enumeration of all partitions.

Examples

			From _M. F. Hasler_, Oct 12 2018: (Start)
The table starts as follows:
  n : signature   (A025487(n) = factorization)
  1 : []          (1 = empty product)
  2 : [1]         (2 = 2^1)
  3 : [2]         (4 = 2^2)
  4 : [1, 1]      (6 = 2^1 * 3^1)
  5 : [3]         (8 = 2^3)
  6 : [2, 1]      (12 = 2^2 * 3^1)
  7 : [4]         (16 = 2^4)
  8 : [3,1]       (24 = 2^3 * 3^1)
  9 : [1, 1, 1]   (30 = 2^1 * 3^1 * 5^1)
  etc. (End)
		

Crossrefs

Cf. A025487, A036041 (row sums), A061394 (row lengths), A124829, A036036, A080577.

Programs

Formula

A025487(n) = Product_{k=1..A061394(n)} prime(k)^T(n,k). [Edited by M. F. Hasler, Oct 12 2018]

Extensions

Erroneous explanations in cross-references corrected by M. F. Hasler, Oct 12 2018

A146292 Triangle T(n,m) read by rows (n >= 1, 0 <= m <= A036041(n)), giving the number of divisors of A025487(n) with m prime factors (counted with multiplicity).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 2, 2, 2, 2, 1, 1, 3, 4, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 3, 4, 4, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 2, 1, 1, 3, 5, 5, 3, 1, 1, 2, 2, 2, 2
Offset: 1

Views

Author

Matthew Vandermast, Nov 11 2008

Keywords

Comments

All rows are palindromic. T(n, 0) = T(n, A036041(n)) = 1.
Every row that appears in A146291 appears exactly once in the table. Rows appear in order of first appearance in A146291.

Examples

			Rows begin:
  1;
  1,1;
  1,1,1;
  1,2,1;
  1,1,1,1;
  1,2,2,1;
  1,1,1,1,1;...
36's 9 divisors include 1 divisor with 0 total prime factors (1);, 2 with 1 (2 and 3); 3 with 2 (4, 6 and 9); 2 with 3 (12 and 18); and 1 with 4 (36). Since 36 = A025487(11), the 11th row of the table therefore reads (1, 2, 3, 2, 1). These are the positive coefficients of the polynomial 1 + 2k + 3k^2 + 2k^3 + (1)k^4 = (1 + k + k^2)(1 + k + k^2), derived from the prime factorization of 36 (namely, 2^2*3^2).
		

Crossrefs

For the number of prime factors of n counted with multiplicity, see A001222.
Row sums equal A146288(n). T(n, 1) = A061394(n) for n>1.
Row A098719(n) of this table is identical to row n of A007318.
Cf. A146291. Also cf. A146289, A146290.

Formula

If A025487(n)'s canonical factorization into prime powers is the product of p^e(p), then T(n, m) is the coefficient of k^m in the polynomial expansion of Product_p (sum_{i=0..e} k^i).

A304886 Irregular triangle where row n contains indices k where the product of A002110(k) = A025487(n).

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 1, 1, 1, 1, 1, 2, 4, 2, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2
Offset: 1

Views

Author

Michael De Vlieger, May 21 2018

Keywords

Comments

Row n consists of terms k such that A025487(n) = the product of primorials p_k#, the k in row n written least to greatest k.
For m = A025487(n) in A000079 (i.e., m is an integer power of 2), row n contains A000079(m) 1s.
For m = A025487(n) in A002110 (i.e., m is a primorial) row n contains a single term k that is the index of m in A002110.

Examples

			Triangle begins as in rightmost column, which lists the terms that occur on row n. Maximum value of each row is given by A061394(n).
   n  A025487(n)   Row n
--------------------------------
   1        1      0
   2        2      1
   3        4      1,1
   4        6      2
   5        8      1,1,1
   6       12      1,2
   7       16      1,1,1,1
   8       24      1,1,2
   9       30      3
  10       32      1,1,1,1,1
  11       36      2,2
  12       48      1,1,1,2
  13       60      1,3
  14       64      1,1,1,1,1,1
  15       72      1,2,2
  16       96      1,1,1,1,2
  17      120      1,1,3
  18      128      1,1,1,1,1,1,1
  19      144      1,1,2,2
  20      180      2,3
  ...
		

Crossrefs

Cf. A025487, A051282 (row lengths), A061394 (row maximum), A124832, A181815.
Cf. also A307056.

Programs

  • Mathematica
    (* Simple (A025487(n) < 10^5): *)
    {{0}}~Join~Map[With[{w = #}, Reverse@ Array[Function[k, Count[w, _?(# >= k &)] ], Max@ w]] &, Select[Array[{#, FactorInteger[#][[All, -1]]} &, 400], Times @@ Boole@ {#1 == Times @@ MapIndexed[Prime[First@ #2]^#1 &, #3], #2 == #3} == 1 & @@ {#1, #2, Sort[#2, Greater]} & @@ # &][[All, -1]] ]
    (* Efficient (A025487(n) < 10^23): *)
    f[n_] := Block[{ww, g, h},
      g[x_] := Apply[Times,
        MapIndexed[Prime[First@ #2]^#1 &, x]];
      h[x_] := Reverse@
        Array[Function[k, Count[x, _?(# >= k &)] ], Max@ x];
      ww = NestList[Append[#, 1] &, {1}, # - 1] &[-2 +
         Length@ NestWhileList[NextPrime@ # &, 1,
         Times @@ {##} <= n &, All] ];
      Map[h, SortBy[Flatten[#, 1], g]] &@
       Map[Block[{w = #, k = 1},
          Apply[
             Join, {{ConstantArray[1, Length@ w]},
               If[Length@ # == 0, #, #[[1]]] }] &@ Reap[
             Do[
              If[# < n,
                Sow[w]; k = 1,
                 If[k >= Length@ w, Break[], k++]] &@
                   g@ Set[w,
                   If[k == 1,
                     MapAt[# + 1 &, w, k],
                     PadLeft[#, Length@ w, First@ #] &@
                       Drop[MapAt[# + Boole[i > 1] &, w, k],
                        k - 1] ]], {i, Infinity}] ][[-1]] ] &, ww]]; {{0}}~Join~f@ 400

Formula

For row n > 1, Product_{k=1..A051282(n)} A000040(T(n,k)) = A181815(n). [Product of primes indexed by nonzero terms of row n is equal to A181815(n)] - Antti Karttunen, Dec 28 2019

A124830 Number of distinct prime factors of A055932(n).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 2, 2, 3, 1, 2, 2, 2, 3, 1, 2, 3, 2, 2, 3, 1, 2, 3, 2, 3, 2, 4, 2, 3, 1, 3, 2, 3, 2, 3, 2, 4, 2, 3, 3, 2, 1, 3, 2, 3, 4, 2, 3, 3, 2, 3, 4, 2, 3, 3, 2, 1, 4, 3, 2, 3, 4, 2, 3, 3, 2, 4, 3, 2, 3, 4, 2, 3, 4, 3, 2, 1, 4, 3, 3, 2, 5, 3, 3, 4, 2, 3, 3, 2, 4, 3, 2, 4, 3, 4, 2, 3, 3, 4, 3, 2, 3, 1, 4
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    PrimeNu /@ Select[Range[4000], ! MemberQ[Function[f, ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, f]]@ FactorInteger@ #, 0] &] (* Michael De Vlieger, Feb 02 2017 *)
    A055932[n_] := Module[{f = Transpose[FactorInteger[n]][[1]]}, f == {1} || f == Prime[Range[Length[f]]]]; PrimeNu[Select[Range[2000], A055932]] (* G. C. Greubel, May 11 2017 *)
  • Python
    from sympy import nextprime, primefactors
    def a053669(n):
        p = 2
        while True:
            if n%p!=0: return p
            else: p=nextprime(p)
    def ok(n): return True if n==1 else a053669(n)>max(primefactors(n))
    print([len(primefactors(n)) for n in range(1, 10001) if ok(n)]) # Indranil Ghosh, May 11 2017

Formula

a(n) = A001221(A055932(n)).

A329905 a(1) = 0; a(2) = 1; and for n > 2, a(n) = A330682(n) + 2*a(A329904(n)).

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 8, 12, 7, 16, 5, 24, 14, 32, 10, 48, 28, 64, 20, 13, 96, 15, 9, 56, 128, 40, 26, 192, 30, 18, 112, 256, 80, 52, 384, 60, 36, 11, 224, 512, 25, 160, 29, 17, 104, 768, 120, 72, 22, 448, 1024, 50, 320, 31, 58, 34, 208, 1536, 240, 144, 44, 896, 2048, 100, 640, 62, 116, 68, 21, 416, 3072, 27, 49, 480, 288, 88, 57
Offset: 1

Views

Author

Antti Karttunen, Dec 24 2019

Keywords

Comments

Note the indexing: domain begins from one, but the range contains also zero.

Crossrefs

Programs

Formula

a(1) = 0; a(2) = 1; and for n > 2, if A181815(n) is odd, a(n) = 1 + 2*a(A329904(n)), otherwise a(n) = 2*a(A329904(n)).
a(n) = A243071(A181815(n)).
For all n >= 1, A000120(a(n)) = A061394(n).
For all n >= 2, A070939(a(n)) = A329907(n).

A247451 Largest primorial factor of n-th least product of primorial numbers, cf. A025487.

Original entry on oeis.org

1, 2, 2, 6, 2, 6, 2, 6, 30, 2, 6, 6, 30, 2, 6, 6, 30, 2, 6, 30, 6, 210, 6, 30, 2, 6, 30, 6, 210, 6, 30, 2, 6, 30, 6, 210, 6, 30, 30, 2, 30, 6, 210, 6, 30, 6, 210, 6, 30, 30, 2, 30, 6, 2310, 210, 6, 30, 6, 210, 6, 30, 30, 2, 30, 6, 2310, 210, 6, 30, 30, 6
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 17 2014

Keywords

Crossrefs

Programs

  • Haskell
    a247451 n = a247451_list !! (n-1)
    a247451_list = map a007947 a025487_list
  • Mathematica
    (* First, load program f at A025487 *)
    Map[Product[Prime[i], {i, PrimeNu[#]}] &, Union@ Flatten@ f[6]] (* Michael De Vlieger, Jun 24 2024 *)

Formula

a(n) = A007947(A025487(n)) = A002110(A061394(n)).

A329907 Number of iterations of A329904 needed to reach 1.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 4, 3, 5, 3, 5, 4, 6, 4, 6, 5, 7, 5, 4, 7, 4, 4, 6, 8, 6, 5, 8, 5, 5, 7, 9, 7, 6, 9, 6, 6, 4, 8, 10, 5, 8, 5, 5, 7, 10, 7, 7, 5, 9, 11, 6, 9, 5, 6, 6, 8, 11, 8, 8, 6, 10, 12, 7, 10, 6, 7, 7, 5, 9, 12, 5, 6, 9, 9, 7, 6, 11, 6, 13, 8, 11, 7, 8, 8, 6, 10, 13, 6, 7, 10, 10, 6, 8, 7, 12, 7, 14, 9, 12, 8, 9, 9, 7, 11
Offset: 1

Views

Author

Antti Karttunen, Dec 24 2019

Keywords

Comments

Equally, starting from A025487(n), number of iterations of A329899 needed to reach 1.
Any k > 0 occurs 2^(k-1) times in total in this sequence.

Crossrefs

Programs

Formula

a(1) = 0; for n > 1, a(n) = 1 + a(A329904(n)).
a(1) = 0; for n > 1, a(n) = A070939(A329905(n)).
a(n) = A252464(A181815(n)).
For all n >= 1, a(n) >= A061394(n).
Showing 1-10 of 12 results. Next