A146291 Triangle T(n,m) read by rows (n >= 1, 0 <= m <= A001222(n)), giving the number of divisors of n with m prime factors (counted with multiplicity).
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2
Offset: 1
Examples
Rows begin: 1; 1, 1; 1, 1; 1, 1, 1; 1, 1; 1, 2, 1; 1, 1; 1, 1, 1, 1; 1, 1, 1; 1, 2, 1; ... 12 has 1 divisor with 0 total prime factors (1), 2 with 1 (2 and 3), 2 with 2 (4 and 6) and 1 with 3 (12), for a total of 6. The 12th row of the table therefore reads (1, 2, 2, 1). These are the positive coefficients of the polynomial 1 + 2k + 2k^2 + (1)k^3 = (1 + k + k^2)(1 + k), derived from the prime factorization of 12 (namely, 2^2*3^1).
Links
- Alois P. Heinz, Rows n = 1..2500, flattened
- Anonymous?, Polynomial calculator
- Eric Weisstein's World of Mathematics, Roundness
- G. Xiao, WIMS server, Factoris (both expands and factors polynomials)
Crossrefs
Programs
-
Maple
with(numtheory): T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))( add(x^bigomega(d), d=divisors(n))): seq(T(n), n=1..100); # Alois P. Heinz, Feb 25 2015
-
Mathematica
Join[{{1}}, Table[nn = DivisorSigma[0, n]; CoefficientList[ Series[Product[(1 - x^i)/(1 - x), {i, FactorInteger[n][[All, 2]] + 1}], {x, 0, nn}], x], {n, 2, 100}]] (* Geoffrey Critzer, Jan 01 2015 *)
Formula
If the canonical factorization of n into prime powers is the product of p^e(p), then T(n,m) is the coefficient of k^m in the polynomial expansion of Product_p (sum_{i=0..e} k^i).
Comments