A025487
Least integer of each prime signature A124832; also products of primorial numbers A002110.
Original entry on oeis.org
1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, 180, 192, 210, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 576, 720, 768, 840, 864, 900, 960, 1024, 1080, 1152, 1260, 1296, 1440, 1536, 1680, 1728, 1800, 1920, 2048, 2160, 2304, 2310
Offset: 1
The first few terms are 1, 2, 2^2, 2*3, 2^3, 2^2*3, 2^4, 2^3*3, 2*3*5, ...
- Franklin T. Adams-Watters, Table of n, a(n) for n = 1..10001 (first 291 terms from Will Nicholes)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972.
- Kevin Broughan, Equivalents of the Riemann Hypothesis, Vol. 1: Arithmetic Equivalents, Cambridge University Press, 2017. See section 8.2, "Hardy-Ramanujan Numbers".
- YoungJu Choie, Nicolas Lichiardopol, Pieter Moree and Patrick Solé, On Robin's criterion for the Riemann hypothesis, Journal de théorie des nombres de Bordeaux, Vol. 19, No. 2 (2007), pp. 357-372. See section 5, p. 367.
- Asaf Cohen Antonir and Asaf Shapira, An Elementary Proof of a Theorem of Hardy and Ramanujan (2022). arXiv:2207.09410 [math.NT]
- Michael De Vlieger, Relations of A025487 to A002110, A002182, and A002201.
- Steven R. Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020, pp. 9-10.
- G. H. Hardy and S. Ramanujan, Asymptotic formulae for the distribution of integers of various types, Proc. London Math. Soc, Ser. 2, Vol. 16 (1917), pp. 112-132. Also published in the book Collected Papers of Srinivasa Ramanujan, Chelsea, 1962, pages 245-261.
- Jeffery Kline, On the eigenstructure of sparse matrices related to the prime number theorem, Linear Algebra and its Applications (2020) Vol. 584, 409-430.
- L. B. Richmond, Asymptotic results for partitions (I) and the distribution of certain integers, Journal of Number Theory, Vol. 8, No. 4 (1976), pp. 372-389. See page 388.
Cf.
A025488,
A051282,
A036041,
A051466,
A061394,
A124832,
A161360,
A166469,
A181815,
A181817,
A283980,
A306802,
A322584,
A322585 (characteristic function),
A329897,
A329898,
A329899,
A329900,
A329904,
A330683.
Equals range of values taken by
A046523.
Subsequences of this sequence include:
A000079,
A000142,
A000400,
A001013,
A001813,
A002110,
A002182,
A005179,
A006939,
A025527,
A056836,
A061742,
A064350,
A066120,
A087980,
A097212,
A097213,
A111059,
A119840,
A119845,
A126098,
A129912,
A140999,
A166338,
A166470,
A166472,
A166473,
A166475,
A167448,
A168262,
A168263,
A168264,
A179215,
A181555,
A181804,
A181806,
A181809,
A181818,
A181822,
A181823,
A181824,
A181825,
A181826,
A181827,
A182763,
A182862,
A182863,
A212170,
A220264,
A220423,
A250269,
A250270,
A260633,
A266047,
A284456,
A300357,
A304938,
A329894,
A330687; also
A037019 and
A330681 (when sorted), possibly also
A289132.
Rearrangements of this sequence include
A036035,
A059901,
A063008,
A077569,
A085988,
A086141,
A087443,
A108951,
A181821,
A181822,
A322827,
A329886,
A329887.
-
import Data.Set (singleton, fromList, deleteFindMin, union)
a025487 n = a025487_list !! (n-1)
a025487_list = 1 : h [b] (singleton b) bs where
(_ : b : bs) = a002110_list
h cs s xs'@(x:xs)
| m <= x = m : h (m:cs) (s' `union` fromList (map (* m) cs)) xs'
| otherwise = x : h (x:cs) (s `union` fromList (map (* x) (x:cs))) xs
where (m, s') = deleteFindMin s
-- Reinhard Zumkeller, Apr 06 2013
-
isA025487 := proc(n)
local pset,omega ;
pset := sort(convert(numtheory[factorset](n),list)) ;
omega := nops(pset) ;
if op(-1,pset) <> ithprime(omega) then
return false;
end if;
for i from 1 to omega-1 do
if padic[ordp](n,ithprime(i)) < padic[ordp](n,ithprime(i+1)) then
return false;
end if;
end do:
true ;
end proc:
A025487 := proc(n)
option remember ;
local a;
if n = 1 then
1 ;
else
for a from procname(n-1)+1 do
if isA025487(a) then
return a;
end if;
end do:
end if;
end proc:
seq(A025487(n),n=1..100) ; # R. J. Mathar, May 25 2017
-
PrimeExponents[n_] := Last /@ FactorInteger[n]; lpe = {}; ln = {1}; Do[pe = Sort@PrimeExponents@n; If[ FreeQ[lpe, pe], AppendTo[lpe, pe]; AppendTo[ln, n]], {n, 2, 2350}]; ln (* Robert G. Wilson v, Aug 14 2004 *)
(* Second program: generate all terms m <= A002110(n): *)
f[n_] := {{1}}~Join~
Block[{lim = Product[Prime@ i, {i, n}],
ww = NestList[Append[#, 1] &, {1}, n - 1], dec},
dec[x_] := Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, x]];
Map[Block[{w = #, k = 1},
Sort@ Prepend[If[Length@ # == 0, #, #[[1]]],
Product[Prime@ i, {i, Length@ w}] ] &@ Reap[
Do[
If[# < lim,
Sow[#]; k = 1,
If[k >= Length@ w, Break[], k++]] &@ dec@ Set[w,
If[k == 1,
MapAt[# + 1 &, w, k],
PadLeft[#, Length@ w, First@ #] &@
Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1] ]],
{i, Infinity}] ][[-1]]
] &, ww]]; Sort[Join @@ f@ 13] (* Michael De Vlieger, May 19 2018 *)
-
isA025487(n)=my(k=valuation(n,2),t);n>>=k;forprime(p=3,default(primelimit),t=valuation(n,p);if(t>k,return(0),k=t);if(k,n/=p^k,return(n==1))) \\ Charles R Greathouse IV, Jun 10 2011
-
factfollow(n)={local(fm, np, n2);
fm=factor(n); np=matsize(fm)[1];
if(np==0,return([2]));
n2=n*nextprime(fm[np,1]+1);
if(np==1||fm[np,2]Franklin T. Adams-Watters, Dec 01 2011 */
-
is(n) = {if(n==1, return(1)); my(f = factor(n)); f[#f~, 1] == prime(#f~) && vecsort(f[, 2],,4) == f[, 2]} \\ David A. Corneth, Feb 14 2019
-
upto(Nmax)=vecsort(concat(vector(logint(Nmax,2),n,select(t->t<=Nmax,if(n>1,[factorback(primes(#p),Vecrev(p)) || p<-partitions(n)],[1,2]))))) \\ M. F. Hasler, Jul 17 2019
-
\\ For fast generation of large number of terms, use this program:
A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980
A025487list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t); while(lista[i] != u, if(2*lista[i] <= u, listput(lista,2*lista[i]); t = A283980(lista[i]); if(t <= u, listput(lista,t))); i++); vecsort(Vec(lista)); }; \\ Returns a list of terms up to the term 2^e.
v025487 = A025487list(101);
A025487(n) = v025487[n];
for(n=1,#v025487,print1(A025487(n), ", ")); \\ Antti Karttunen, Dec 24 2019
-
def sharp_primorial(n): return sloane.A002110(prime_pi(n))
N = 2310
nmax = 2^floor(log(N,2))
sorted([j for j in (prod(sharp_primorial(t[0])^t[1] for k, t in enumerate(factor(n))) for n in (1..nmax)) if j <= N])
# Giuseppe Coppoletta, Jan 26 2015
Original entry on oeis.org
36, 48, 50, 54, 72, 75, 80, 96, 98, 100, 108, 112, 135, 144, 147, 160, 162, 189, 192, 196, 200, 216, 224, 225, 240, 242, 245, 250, 252, 270, 288, 294, 300, 320, 324, 336, 338, 350, 352, 360, 363, 375, 378, 384, 392, 396, 400, 405, 416, 432, 441, 448, 450, 468, 480, 484, 486, 490, 500, 504, 507, 525
Offset: 1
For prime p, A360480(p) = A360543(p) = A361235(p) = A355432(p) = 0, since k < p is coprime to p.
For prime power n = p^e > 4, e > 0, A360543(n) = p^(e-1) - e, but A360480(n) = A361235(n) = A355432(n) = 0, since the other sequences require omega(n) > 1.
For squarefree composite n, A360480(n) >= 1 and A361235(n) >= 1 (the latter for n > 6), but A360543(n) = A355432(n) = 0, since the other sequences require at least 1 prime power factor p^e | n with e > 0.
For n = 18, A360480(n) = | {10, 14, 15} | = 3,
A360543(n) = | {} | = 0,
A361235(n) = | {4, 8, 16} | = 3,
A355432(n) = | {12} | = 1.
Therefore 18 is not in the sequence.
For n = 36, A360480(n) = | {10, 14, 15, 20, 21, 22, 26, 28, 33, 34} | = 10,
A360543(n) = | {30} | = 1,
A361235(n) = | {8, 16, 27, 32} | = 4,
A355432(n) = | {24} | = 1.
Therefore 36 is the smallest term in the sequence.
Table pertaining to the first 12 terms:
Key: a = A360480, b = A360543, c = A243823; d = A361235, e = A355432, f = A243822;
g = A046753 = f + c, tau = A000005, phi = A000010.
n | a + b = c | d + e = f | g + tau + phi - 1 = n
------------------------------------------------------
36 | 10 + 1 = 11 | 4 + 1 = 5 | 16 + 9 + 12 - 1 = 36
48 | 16 + 2 = 18 | 3 + 2 = 5 | 23 + 10 + 16 - 1 = 48
50 | 18 + 1 = 19 | 4 + 2 = 6 | 25 + 6 + 20 - 1 = 50
54 | 19 + 2 = 21 | 4 + 4 = 8 | 29 + 8 + 18 - 1 = 54
72 | 27 + 4 = 31 | 4 + 2 = 6 | 37 + 12 + 24 - 1 = 72
75 | 25 + 2 = 27 | 2 + 1 = 3 | 30 + 6 + 40 - 1 = 75
80 | 32 + 3 = 35 | 3 + 1 = 4 | 39 + 10 + 32 - 1 = 80
96 | 38 + 7 = 45 | 4 + 4 = 8 | 53 + 12 + 32 - 1 = 96
98 | 41 + 3 = 44 | 5 + 2 = 7 | 51 + 6 + 42 - 1 = 98
100 | 42 + 4 = 46 | 4 + 2 = 6 | 52 + 9 + 40 - 1 = 100
108 | 44 + 8 = 52 | 5 + 4 = 9 | 61 + 12 + 36 - 1 = 108
112 | 48 + 3 = 51 | 3 + 1 = 4 | 55 + 10 + 48 - 1 = 112
- Michael De Vlieger, Table of n, a(n) for n = 1..16384
- Michael De Vlieger, Diagram showing k = 1..n for n = 1..54 in blue for k counted by A360480(n), in green for k counted by A360543(n), in gold for k counted by A361235(n), and in magenta for k counted by A355432(n). Red dots indicate k | n such that k > 1, while gray dots indicate gcd(k, n) = 1.
- Michael De Vlieger, 1016 X 1016 pixel bitmap read left to right in rows, then top to bottom where the k-th pixel is black if A126706(k) is in this sequence, else white (1032256 pixels total).
Cf.
A000005,
A000010,
A001694,
A002182,
A007947,
A045763,
A053669,
A119288,
A126706,
A168263,
A243822,
A243823,
A355432,
A360480,
A360543,
A361235.
-
nn = 2^16;
a053669[n_] := If[OddQ[n], 2, p = 2; While[Divisible[n, p], p = NextPrime[p]]; p];
s = Select[Range[nn], Nor[PrimePowerQ[#], SquareFreeQ[#]] &];
Reap[ Do[n = s[[j]];
If[And[#1*a053669[n] < n, n/#1 >= #2] & @@ {Times @@ #, #[[2]]} &@
FactorInteger[n][[All, 1]], Sow[n]], {j, Length[s]}]][[-1, -1]]
A168264
For all sufficiently high values of k, d(n^k) > d(m^k) for all m < n. (Let k, m, and n represent positive integers only.)
Original entry on oeis.org
1, 2, 4, 6, 12, 24, 30, 60, 120, 180, 210, 420, 840, 1260, 1680, 2310, 4620, 9240, 13860, 18480, 27720, 30030, 60060, 120120, 180180, 240240, 360360, 510510, 1021020, 2042040, 3063060, 4084080, 6126120, 9699690, 19399380, 38798760, 58198140
Offset: 1
Since the exponents in 1680's prime factorization are (4,1,1,1), the k-th power of 1680 has (4k+1)(k+1)^3 = 4k^4 + 13k^3 + 15k^2 + 7k + 1 divisors. Comparison with the analogous formulas for all smaller members of A025487 shows the following:
a) No number smaller than 1680 has a positive coefficient in its "power formula" for any exponent larger than k^4.
b) The only power formula with a k^4 coefficient as high as 4 is that for 1260 (4k^4 + 12k^3 + 13k^2 + 6k + 1).
c) The k^3 coefficient for 1680 is higher than for 1260.
So for all sufficiently high values of k, d(1680^k) > d(m^k) for all m < 1680.
Original entry on oeis.org
1, 2, 6, 12, 60, 420, 840, 27720, 360360, 5354228880
Offset: 1
A340840
Union of the highly composite and superabundant numbers.
Original entry on oeis.org
1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 7560, 10080, 15120, 20160, 25200, 27720, 45360, 50400, 55440, 83160, 110880, 166320, 221760, 277200, 332640, 498960, 554400, 665280, 720720, 1081080, 1441440, 2162160, 2882880
Offset: 1
Subsets:
A002182,
A002201,
A004394,
A004490,
A166735,
A166981,
A168263,
A189228,
A224078,
A304234,
A304235,
A308913,
A333655,
A338786.
-
(* Load the function f[] at A025487, then: *) Block[{t = Union@ Flatten@ f[15], a = {}, b = {}, d = 0, s = 0}, Do[(If[#2 > d, d = #2; AppendTo[a, #1]]; If[#3/#1 > s, s = #3/#1; AppendTo[b, #1]]) & @@ Flatten@ {t[[i]], DivisorSigma[{0, 1}, t[[i]]]}, {i, Length@ t}]; Union[a, b]]
A212169
List of highly composite numbers (A002182) with an exponent in its prime factorization that is at least as great as the number of positive exponents; intersection of A002182 and A212165.
Original entry on oeis.org
1, 2, 4, 12, 24, 36, 48, 120, 240, 360, 720, 1680, 5040, 10080, 15120, 20160, 25200, 45360, 50400, 110880, 221760, 332640, 554400, 665280, 2882880, 8648640, 14414400, 17297280, 43243200, 294053760
Offset: 1
A002182(62) = 294053760 = 2^7*3^3*5*7*11*13*17 has 7 positive exponents in its prime factorization, including 5 implied 1's. The maximal exponent in its prime factorization is also 7. Therefore, 294053760 is a term of this sequence.
- S. Ramanujan, Highly composite numbers, Proc. Lond. Math. Soc. 14 (1915), 347-409; reprinted in Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962.
A212165 also includes all terms in
A006939,
A066120,
A087980,
A130091,
A138534,
A141586,
A166475,
A181555,
A181813-
A181814,
A181818,
A181823-
A181825,
A182763.
-
okQ[n_] := Module[{f = Transpose[FactorInteger[n]][[2]]}, Max[f] >= Length[f]]; a = 0; t = {}; Do[b = DivisorSigma[0, n]; If[b > a, a = b; If[okQ[n], AppendTo[t, n]]], {n, 10^6}]; t (* T. D. Noe, May 24 2012 *)
A367511
Highly composite numbers h(k) = A002182(k) such that h >= rad(h)^2, where rad() = A007947().
Original entry on oeis.org
1, 4, 36, 48, 45360, 50400
Offset: 1
Let P(n) = A002110(n).
a(1) = h(1) = 1 since 1 >= 1^2.
a(2) = h(3) = 4 since 4 >= P(1)^2, 4 >= 2^2.
a(3) = h(7) = 36 since 36 >= P(2)^2, 36 >= 6^2.
a(4) = h(8) = 48 since 48 >= P(2)^2, 48 >= 6^2.
a(5) = h(26) = 43560 since 43560 >= P(4)^2, where P(4) = 210, and 210^2 = 44100.
a(6) = h(27) = 50400 since 50400 >= P(4)^2.
Let V(i) = A301414(i) and let P(j) = A002110(j).
Plot of highly composite h = V(i)*P(j) at (x,y) = (j,i), i = 1..16, j = 1..7, showing h in this sequence in parentheses, and h in A168263 marked with an asterisk (*):
V(i)\P(j) 1 2 6 30 210 2310 30030 ...
+---------------------------------------
1 |(1*) 2* 6*
2 | (4*) 12* 60*
4 | 24* 120* 840*
6 | (36) 180* 1260*
8 | (48) 240 1680*
12 | 360 2520 27720*
24 | 720 5040 55440 720720
36 | 7560 83160 1081080
48 | 10080 110880 1441440
72 | 15120 166320 2162160
96 | 20160 221760 2882880
120 | 25200 277200 3603600
144 | 332640 4324320
216 | (45360) 498960 6486480
240 | (50400) 554400 7207200
...
Cf.
A001221,
A002110,
A002182,
A007947,
A025487,
A108602,
A126706,
A131605,
A168263,
A286708,
A301413,
A301414,
A303606,
A332785,
A365308,
A362702,
A366250.
-
(* First load function f at A025487, then run the following: *)
s = Union@ Flatten@ f[12];
t = Map[DivisorSigma[0, #] &, s];
h = Map[s[[FirstPosition[t, #][[1]]]] &, Union@ FoldList[Max, t]];
Reap[Do[If[# >= Product[Prime[j], {j, PrimeNu[#]}]^2, Sow[#]] &[ h[[i]] ],
{i, Length[h]}] ][[-1, 1]]
A367708
Numbers k that are neither squarefree nor prime powers such that max(A119288(k), A053669(k)) <= A003557(k) < A007947(k).
Original entry on oeis.org
50, 75, 80, 98, 112, 135, 147, 189, 240, 242, 245, 252, 270, 294, 300, 336, 338, 350, 352, 360, 363, 378, 396, 416, 450, 468, 480, 490, 504, 507, 525, 528, 540, 550, 560, 578, 588, 594, 600, 605, 612, 624, 650, 672, 684, 700, 702, 720, 722, 726, 735, 750, 756
Offset: 1
Let q = A053669(k) and let p = A119288(k).
For s = 10, we have {50, 80}, since
s * { max(p, q) <= m < s : rad(m) | s }
= 10*{ max(5, 3) <= m < 10 : rad(m) | 10 }
= 10*{5, 8} = {50, 80}.
For s = 15, we have {45, 135}, since
s * { max(p, q) <= m < s : rad(m) | s }
= 15*{ max(5, 2) <= m < 15 : rad(m) | 15 }
= 15*{5, 9} = {240, 270, 300, 360, 450, 480, 540, 600, 720, 750, 810}.
For s = 30, we have {45, 135}, since
s * { max(p, q) <= m < s : rad(m) | s }
= 30*{ max(3, 7) <= m < 30 : rad(m) | 30 }
= 30*{8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27}
= {240, 270, 300, 360, 450, 480, 540, 600, 720, 750, 810}.
Cf.
A002182,
A003586,
A053669,
A119288,
A120944,
A168263,
A341645,
A361098,
A364702,
A366250,
A367511.
-
nn = 756;
Select[Select[Range[12, nn], Nor[SquareFreeQ[#], PrimePowerQ[#]] &],
And[Max[#2, #3] <= #1 < #4, ! AllTrue[#5, # > 1 &]] & @@
{#1/#4, #2, #3, #4, #5} & @@
{#1, #2[[2, 1]], #3, Times @@ #2[[All, 1]], #2[[All, -1]]} & @@
{#, FactorInteger[#], If[OddQ[#], 2,
q = 3; While[Divisible[#, q], q = NextPrime[q]]; q]} &]
Showing 1-8 of 8 results.
Comments