cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A025487 Least integer of each prime signature A124832; also products of primorial numbers A002110.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, 180, 192, 210, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 576, 720, 768, 840, 864, 900, 960, 1024, 1080, 1152, 1260, 1296, 1440, 1536, 1680, 1728, 1800, 1920, 2048, 2160, 2304, 2310
Offset: 1

Views

Author

Keywords

Comments

All numbers of the form 2^k1*3^k2*...*p_n^k_n, where k1 >= k2 >= ... >= k_n, sorted.
A111059 is a subsequence. - Reinhard Zumkeller, Jul 05 2010
Choie et al. (2007) call these "Hardy-Ramanujan integers". - Jean-François Alcover, Aug 14 2014
The exponents k1, k2, ... can be read off Abramowitz & Stegun p. 831, column labeled "pi".
For all such sequences b for which it holds that b(n) = b(A046523(n)), the sequence which gives the indices of records in b is a subsequence of this sequence. For example, A002182 which gives the indices of records for A000005, A002110 which gives them for A001221 and A000079 which gives them for A001222. - Antti Karttunen, Jan 18 2019
The prime signature corresponding to a(n) is given in row n of A124832. - M. F. Hasler, Jul 17 2019

Examples

			The first few terms are 1, 2, 2^2, 2*3, 2^3, 2^2*3, 2^4, 2^3*3, 2*3*5, ...
		

Crossrefs

Subsequence of A055932, A191743, and A324583.
Cf. A085089, A101296 (left inverses).
Equals range of values taken by A046523.
Cf. A178799 (first differences), A247451 (squarefree kernel), A146288 (number of divisors).
Rearrangements of this sequence include A036035, A059901, A063008, A077569, A085988, A086141, A087443, A108951, A181821, A181822, A322827, A329886, A329887.
Cf. also array A124832 (row n = prime signature of a(n)) and A304886, A307056.

Programs

  • Haskell
    import Data.Set (singleton, fromList, deleteFindMin, union)
    a025487 n = a025487_list !! (n-1)
    a025487_list = 1 : h [b] (singleton b) bs where
       (_ : b : bs) = a002110_list
       h cs s xs'@(x:xs)
         | m <= x    = m : h (m:cs) (s' `union` fromList (map (* m) cs)) xs'
         | otherwise = x : h (x:cs) (s  `union` fromList (map (* x) (x:cs))) xs
         where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Apr 06 2013
    
  • Maple
    isA025487 := proc(n)
        local pset,omega ;
        pset := sort(convert(numtheory[factorset](n),list)) ;
        omega := nops(pset) ;
        if op(-1,pset) <> ithprime(omega) then
            return false;
        end if;
        for i from 1 to omega-1 do
            if padic[ordp](n,ithprime(i)) < padic[ordp](n,ithprime(i+1)) then
                return false;
            end if;
        end do:
        true ;
    end proc:
    A025487 := proc(n)
        option remember ;
        local a;
        if n = 1 then
            1 ;
        else
            for a from procname(n-1)+1 do
                if isA025487(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A025487(n),n=1..100) ; # R. J. Mathar, May 25 2017
  • Mathematica
    PrimeExponents[n_] := Last /@ FactorInteger[n]; lpe = {}; ln = {1}; Do[pe = Sort@PrimeExponents@n; If[ FreeQ[lpe, pe], AppendTo[lpe, pe]; AppendTo[ln, n]], {n, 2, 2350}]; ln (* Robert G. Wilson v, Aug 14 2004 *)
    (* Second program: generate all terms m <= A002110(n): *)
    f[n_] := {{1}}~Join~
      Block[{lim = Product[Prime@ i, {i, n}],
       ww = NestList[Append[#, 1] &, {1}, n - 1], dec},
       dec[x_] := Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, x]];
       Map[Block[{w = #, k = 1},
          Sort@ Prepend[If[Length@ # == 0, #, #[[1]]],
            Product[Prime@ i, {i, Length@ w}] ] &@ Reap[
             Do[
              If[# < lim,
                 Sow[#]; k = 1,
                 If[k >= Length@ w, Break[], k++]] &@ dec@ Set[w,
                 If[k == 1,
                   MapAt[# + 1 &, w, k],
                   PadLeft[#, Length@ w, First@ #] &@
                     Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1] ]],
               {i, Infinity}] ][[-1]]
    ] &, ww]]; Sort[Join @@ f@ 13] (* Michael De Vlieger, May 19 2018 *)
  • PARI
    isA025487(n)=my(k=valuation(n,2),t);n>>=k;forprime(p=3,default(primelimit),t=valuation(n,p);if(t>k,return(0),k=t);if(k,n/=p^k,return(n==1))) \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    factfollow(n)={local(fm, np, n2);
      fm=factor(n); np=matsize(fm)[1];
      if(np==0,return([2]));
      n2=n*nextprime(fm[np,1]+1);
      if(np==1||fm[np,2]Franklin T. Adams-Watters, Dec 01 2011 */
    
  • PARI
    is(n) = {if(n==1, return(1)); my(f = factor(n));  f[#f~, 1] == prime(#f~) && vecsort(f[, 2],,4) == f[, 2]} \\ David A. Corneth, Feb 14 2019
    
  • PARI
    upto(Nmax)=vecsort(concat(vector(logint(Nmax,2),n,select(t->t<=Nmax,if(n>1,[factorback(primes(#p),Vecrev(p)) || p<-partitions(n)],[1,2]))))) \\ M. F. Hasler, Jul 17 2019
    
  • PARI
    \\ For fast generation of large number of terms, use this program:
    A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980
    A025487list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t); while(lista[i] != u, if(2*lista[i] <= u, listput(lista,2*lista[i]); t = A283980(lista[i]); if(t <= u, listput(lista,t))); i++); vecsort(Vec(lista)); }; \\ Returns a list of terms up to the term 2^e.
    v025487 = A025487list(101);
    A025487(n) = v025487[n];
    for(n=1,#v025487,print1(A025487(n), ", ")); \\ Antti Karttunen, Dec 24 2019
    
  • Sage
    def sharp_primorial(n): return sloane.A002110(prime_pi(n))
    N = 2310
    nmax = 2^floor(log(N,2))
    sorted([j for j in (prod(sharp_primorial(t[0])^t[1] for k, t in enumerate(factor(n))) for n in (1..nmax)) if j <= N])
    # Giuseppe Coppoletta, Jan 26 2015

Formula

What can be said about the asymptotic behavior of this sequence? - Franklin T. Adams-Watters, Jan 06 2010
Hardy & Ramanujan prove that there are exp((2 Pi + o(1))/sqrt(3) * sqrt(log x/log log x)) members of this sequence up to x. - Charles R Greathouse IV, Dec 05 2012
From Antti Karttunen, Jan 18 & Dec 24 2019: (Start)
A085089(a(n)) = n.
A101296(a(n)) = n [which is the first occurrence of n in A101296, and thus also a record.]
A001221(a(n)) = A061395(a(n)) = A061394(n).
A007814(a(n)) = A051903(a(n)) = A051282(n).
a(A101296(n)) = A046523(n).
a(A306802(n)) = A002182(n).
a(n) = A108951(A181815(n)) = A329900(A181817(n)).
If A181815(n) is odd, a(n) = A283980(a(A329904(n))), otherwise a(n) = 2*a(A329904(n)).
(End)
Sum_{n>=1} 1/a(n) = Product_{n>=1} 1/(1 - 1/A002110(n)) = A161360. - Amiram Eldar, Oct 20 2020

Extensions

Offset corrected by Matthew Vandermast, Oct 19 2008
Minor correction by Charles R Greathouse IV, Sep 03 2010

A361098 Intersection of A360765 and A360768.

Original entry on oeis.org

36, 48, 50, 54, 72, 75, 80, 96, 98, 100, 108, 112, 135, 144, 147, 160, 162, 189, 192, 196, 200, 216, 224, 225, 240, 242, 245, 250, 252, 270, 288, 294, 300, 320, 324, 336, 338, 350, 352, 360, 363, 375, 378, 384, 392, 396, 400, 405, 416, 432, 441, 448, 450, 468, 480, 484, 486, 490, 500, 504, 507, 525
Offset: 1

Views

Author

Michael De Vlieger, Mar 15 2023

Keywords

Comments

Numbers k that are neither prime powers nor squarefree, such that rad(k) * A053669(k) < k and k/rad(k) >= A119288(k), where rad(k) = A007947(k).
Numbers k such that A360480(k), A360543(k), A361235(k), and A355432(k) are positive.
Subset of A126706. All terms are neither prime powers nor squarefree.
From Michael De Vlieger, Aug 03 2023: (Start)
Superset of A286708 = A001694 \ {{1} U A246547}, which in turn is a superset of A303606. We may write k in A286708 as m*rad(k)^2, m >= 1. Since omega(k) > 1, it is clear both k/rad(k) > A053669(k) and k/rad(k) >= A119288(k). Also superset of A359280 = A286708 \ A303606.
This sequence contains {A002182 \ A168263}. (End)

Examples

			For prime p, A360480(p) = A360543(p) = A361235(p) = A355432(p) = 0, since k < p is coprime to p.
For prime power n = p^e > 4, e > 0, A360543(n) = p^(e-1) - e, but A360480(n) = A361235(n) = A355432(n) = 0, since the other sequences require omega(n) > 1.
For squarefree composite n, A360480(n) >= 1 and A361235(n) >= 1 (the latter for n > 6), but A360543(n) = A355432(n) = 0, since the other sequences require at least 1 prime power factor p^e | n with e > 0.
For n = 18, A360480(n) = | {10, 14, 15} | = 3,
            A360543(n) = | {} | = 0,
            A361235(n) = | {4, 8, 16} | = 3,
            A355432(n) = | {12} | = 1.
Therefore 18 is not in the sequence.
For n = 36, A360480(n) = | {10, 14, 15, 20, 21, 22, 26, 28, 33, 34} | = 10,
            A360543(n) = | {30} | = 1,
            A361235(n) = | {8, 16, 27, 32} | = 4,
            A355432(n) = | {24} | = 1.
Therefore 36 is the smallest term in the sequence.
Table pertaining to the first 12 terms:
Key: a = A360480, b = A360543, c = A243823; d = A361235, e = A355432, f = A243822;
g = A046753 = f + c, tau = A000005, phi = A000010.
    n |  a + b =  c | d + e = f | g + tau + phi - 1 =  n
  ------------------------------------------------------
   36 | 10 + 1 = 11 | 4 + 1 = 5 | 16 +  9 + 12 - 1 =  36
   48 | 16 + 2 = 18 | 3 + 2 = 5 | 23 + 10 + 16 - 1 =  48
   50 | 18 + 1 = 19 | 4 + 2 = 6 | 25 +  6 + 20 - 1 =  50
   54 | 19 + 2 = 21 | 4 + 4 = 8 | 29 +  8 + 18 - 1 =  54
   72 | 27 + 4 = 31 | 4 + 2 = 6 | 37 + 12 + 24 - 1 =  72
   75 | 25 + 2 = 27 | 2 + 1 = 3 | 30 +  6 + 40 - 1 =  75
   80 | 32 + 3 = 35 | 3 + 1 = 4 | 39 + 10 + 32 - 1 =  80
   96 | 38 + 7 = 45 | 4 + 4 = 8 | 53 + 12 + 32 - 1 =  96
   98 | 41 + 3 = 44 | 5 + 2 = 7 | 51 +  6 + 42 - 1 =  98
  100 | 42 + 4 = 46 | 4 + 2 = 6 | 52 +  9 + 40 - 1 = 100
  108 | 44 + 8 = 52 | 5 + 4 = 9 | 61 + 12 + 36 - 1 = 108
  112 | 48 + 3 = 51 | 3 + 1 = 4 | 55 + 10 + 48 - 1 = 112
		

Crossrefs

Programs

  • Mathematica
    nn = 2^16;
    a053669[n_] := If[OddQ[n], 2, p = 2; While[Divisible[n, p], p = NextPrime[p]]; p];
    s = Select[Range[nn], Nor[PrimePowerQ[#], SquareFreeQ[#]] &];
    Reap[ Do[n = s[[j]];
        If[And[#1*a053669[n] < n, n/#1 >= #2] & @@ {Times @@ #, #[[2]]} &@
          FactorInteger[n][[All, 1]], Sow[n]], {j, Length[s]}]][[-1, -1]]

A168264 For all sufficiently high values of k, d(n^k) > d(m^k) for all m < n. (Let k, m, and n represent positive integers only.)

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 30, 60, 120, 180, 210, 420, 840, 1260, 1680, 2310, 4620, 9240, 13860, 18480, 27720, 30030, 60060, 120120, 180180, 240240, 360360, 510510, 1021020, 2042040, 3063060, 4084080, 6126120, 9699690, 19399380, 38798760, 58198140
Offset: 1

Views

Author

Matthew Vandermast, Nov 23 2009

Keywords

Comments

d(n) is the number of divisors of n (A000005(n)).

Examples

			Since the exponents in 1680's prime factorization are (4,1,1,1), the k-th power of 1680 has (4k+1)(k+1)^3 = 4k^4 + 13k^3 + 15k^2 + 7k + 1 divisors. Comparison with the analogous formulas for all smaller members of A025487 shows the following:
a) No number smaller than 1680 has a positive coefficient in its "power formula" for any exponent larger than k^4.
b) The only power formula with a k^4 coefficient as high as 4 is that for 1260 (4k^4 + 12k^3 + 13k^2 + 6k + 1).
c) The k^3 coefficient for 1680 is higher than for 1260.
So for all sufficiently high values of k, d(1680^k) > d(m^k) for all m < 1680.
		

Crossrefs

Subsequence of A025487, A060735, A116998. Includes A002110, A168262, A168263.
See also A168265, A168266, A168267.

Formula

If the canonical factorization of n into prime powers is Product p^e(p), then the formula for the number of divisors of the k-th power of n is Product_p (ek + 1). (See also A146289, A146290.)
For two positive integers m and n with different prime signatures, let j be the largest exponent of k for which m and n have different coefficients, after the above formula for each integer is expanded as a polynomial. Let m_j and n_j denote the corresponding coefficients. d(n^k) > d(m^k) for all sufficiently high values of k if and only if n_j > m_j.

A168262 Intersection of A003418 and A116998.

Original entry on oeis.org

1, 2, 6, 12, 60, 420, 840, 27720, 360360, 5354228880
Offset: 1

Views

Author

Matthew Vandermast, Nov 23 2009

Keywords

Comments

If, for some prime p, A045948(p) > p^2, then all members of the sequence are less than A003418(p). (Let p_(n) be a prime for which the inequality is satisfied, and let p_(n+1) be the smallest prime > (p_(n))^2. No number smaller than A003418(p_(n+1)) can belong to this sequence. However, for any p_(n) that satisfies the inequality, so does p_(n+1), leading to an endless cycle.) This inequality is first satisfied at p=53, as A045948(53)=5040 > 53^2=2809.
Proof: It follows from the definitions of p_(n) and p_(n+1), and from Bertrand's Postulate, that 2(A045948(p_(n))) > 2((p_(n))^2) > p_(n+1). Therefore 2((A045948(p_(n)))^2 > (p_(n+1))^2.
Since any prime that divides A003418(p_(n)) divides A003418(p_(n+1)) at least twice as often, A045948(p_(n+1)) cannot be less than the product of (A045948(p_n))^2 and A034386(p_(n)). (The latter term greatly exceeds 2 for any actual p_(n).)
Therefore A045948(p_(n+1)) > 2((A045948(p_n))^2 > (p_(n+1))^2, and p_(n+1) satisfies the inequality, implying that no number smaller than A003418(p_(n+2)) can belong to this sequence.

Crossrefs

Also intersection of A003418 and A060735, and of A003418 and A168264. (A168264 is a subsequence of A060735, which is a subsequence of A116998.)
See also A001221, A168263.

A340840 Union of the highly composite and superabundant numbers.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 7560, 10080, 15120, 20160, 25200, 27720, 45360, 50400, 55440, 83160, 110880, 166320, 221760, 277200, 332640, 498960, 554400, 665280, 720720, 1081080, 1441440, 2162160, 2882880
Offset: 1

Views

Author

Michael De Vlieger, Jan 27 2021

Keywords

Comments

Numbers m that set records in A000005 and numbers k that set records for the ratio A000203(k)/k, sorted, with duplicates removed.
All terms are in A025487, since all terms in A002182 and A004394 are products of primorials P in A002110.
For numbers that are highly composite but not superabundant, see A308913; for numbers that are superabundant but not highly composite, see A166735. - Jon E. Schoenfield, Jun 14 2021

Crossrefs

Programs

  • Mathematica
    (* Load the function f[] at A025487, then: *) Block[{t = Union@ Flatten@ f[15], a = {}, b = {}, d = 0, s = 0}, Do[(If[#2 > d, d = #2; AppendTo[a, #1]]; If[#3/#1 > s, s = #3/#1; AppendTo[b, #1]]) & @@ Flatten@ {t[[i]], DivisorSigma[{0, 1}, t[[i]]]}, {i, Length@ t}]; Union[a, b]]

A212169 List of highly composite numbers (A002182) with an exponent in its prime factorization that is at least as great as the number of positive exponents; intersection of A002182 and A212165.

Original entry on oeis.org

1, 2, 4, 12, 24, 36, 48, 120, 240, 360, 720, 1680, 5040, 10080, 15120, 20160, 25200, 45360, 50400, 110880, 221760, 332640, 554400, 665280, 2882880, 8648640, 14414400, 17297280, 43243200, 294053760
Offset: 1

Views

Author

Matthew Vandermast, May 22 2012

Keywords

Comments

Sequence can be used to find the largest highly composite number in subsequences of A212165 (of which there are several in the database).
Ramanujan showed that, in the canonical prime factorization of a highly composite number with largest prime factor prime(n), the largest exponent cannot exceed 2*log_2(prime(n+1)). (See formula 54 on page 15 of the Ramanujan paper.) This limit is less than n for all n >= 9 (and prime(n) >= 23).
1. Direct calculation verifies this for 9 <= n <= 11.
2. Nagura proved that, for any integer m >= 25, there is always a prime between m and 1.2*m. Let n = 11, at which point prime(11) = 31 and log_2(prime(n+1)) = log 37/log 2 = 5.209453.... Since log 1.2/log 2 is only 0.263034..., it follows that n must increase by at least 3k before 2*log_2(prime(n+1)) can increase by 2k, for all values of k. Therefore, 2*log_2(prime(n+1)) can never catch up to prime(n) for n > 11.
665280 = 2^6*3^3*5*7*11 is the largest highly composite number whose prime factorization contains an exponent that is strictly greater than the number of positive exponents in that factorization (including the implied 1's).

Examples

			A002182(62) = 294053760 = 2^7*3^3*5*7*11*13*17 has 7 positive exponents in its prime factorization, including 5 implied 1's. The maximal exponent in its prime factorization is also 7. Therefore, 294053760 is a term of this sequence.
		

References

  • S. Ramanujan, Highly composite numbers, Proc. Lond. Math. Soc. 14 (1915), 347-409; reprinted in Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962.

Crossrefs

Programs

  • Mathematica
    okQ[n_] := Module[{f = Transpose[FactorInteger[n]][[2]]}, Max[f] >= Length[f]]; a = 0; t = {}; Do[b = DivisorSigma[0, n]; If[b > a, a = b; If[okQ[n], AppendTo[t, n]]], {n, 10^6}]; t (* T. D. Noe, May 24 2012 *)

A367511 Highly composite numbers h(k) = A002182(k) such that h >= rad(h)^2, where rad() = A007947().

Original entry on oeis.org

1, 4, 36, 48, 45360, 50400
Offset: 1

Views

Author

Michael De Vlieger, Feb 08 2024

Keywords

Comments

Alternatively, this sequence lists h(k) such that A301413(k) >= A002110(A108602(k)), where A301413 is the "variable part" v described on page 5 of 12 of the Siano paper.
This sequence is likely finite and full. See Chapter III regarding the structure of "Highly Composite Numbers".
Terms larger than 36 are in A366250; A366250 is in A364702, which is in turn a proper subset of A332785, itself contained in A126706.
36 is in A365308, a proper subset of A303606, contained in A131605, in turn contained in A286708.

Examples

			Let P(n) = A002110(n).
a(1) = h(1) = 1 since 1 >= 1^2.
a(2) = h(3) = 4 since 4 >= P(1)^2, 4 >= 2^2.
a(3) = h(7) = 36 since 36 >= P(2)^2, 36 >= 6^2.
a(4) = h(8) = 48 since 48 >= P(2)^2, 48 >= 6^2.
a(5) = h(26) = 43560 since 43560 >= P(4)^2, where P(4) = 210, and 210^2 = 44100.
a(6) = h(27) = 50400 since 50400 >= P(4)^2.
Let V(i) = A301414(i) and let P(j) = A002110(j).
Plot of highly composite h = V(i)*P(j) at (x,y) = (j,i), i = 1..16, j = 1..7, showing h in this sequence in parentheses, and h in A168263 marked with an asterisk (*):
V(i)\P(j) 1   2    6   30   210    2310    30030 ...
        +---------------------------------------
      1 |(1*) 2*   6*
      2 |    (4*) 12*  60*
      4 |         24* 120*  840*
      6 |        (36) 180* 1260*
      8 |        (48) 240  1680*
     12 |             360  2520   27720*
     24 |             720  5040   55440   720720
     36 |                  7560   83160  1081080
     48 |                 10080  110880  1441440
     72 |                 15120  166320  2162160
     96 |                 20160  221760  2882880
    120 |                 25200  277200  3603600
    144 |                        332640  4324320
    216 |                (45360) 498960  6486480
    240 |                (50400) 554400  7207200
    ...
		

Crossrefs

Programs

  • Mathematica
    (* First load function f at A025487, then run the following: *)
    s = Union@ Flatten@ f[12];
    t = Map[DivisorSigma[0, #] &, s];
    h = Map[s[[FirstPosition[t, #][[1]]]] &, Union@ FoldList[Max, t]];
    Reap[Do[If[# >= Product[Prime[j], {j, PrimeNu[#]}]^2, Sow[#]] &[ h[[i]] ],
      {i, Length[h]}] ][[-1, 1]]

A367708 Numbers k that are neither squarefree nor prime powers such that max(A119288(k), A053669(k)) <= A003557(k) < A007947(k).

Original entry on oeis.org

50, 75, 80, 98, 112, 135, 147, 189, 240, 242, 245, 252, 270, 294, 300, 336, 338, 350, 352, 360, 363, 378, 396, 416, 450, 468, 480, 490, 504, 507, 525, 528, 540, 550, 560, 578, 588, 594, 600, 605, 612, 624, 650, 672, 684, 700, 702, 720, 722, 726, 735, 750, 756
Offset: 1

Views

Author

Michael De Vlieger, Feb 09 2024

Keywords

Comments

Does not contain 3-smooth numbers.
Contains neither A168263 nor A367511.
Conjecture: contains most highly composite numbers.

Examples

			Let q = A053669(k) and let p = A119288(k).
For s = 10, we have {50, 80}, since
    s * { max(p, q) <= m < s  : rad(m) | s  }
   = 10*{ max(5, 3) <= m < 10 : rad(m) | 10 }
   = 10*{5, 8} = {50, 80}.
For s = 15, we have {45, 135}, since
    s * { max(p, q) <= m < s  : rad(m) | s  }
   = 15*{ max(5, 2) <= m < 15 : rad(m) | 15 }
   = 15*{5, 9} = {240, 270, 300, 360, 450, 480, 540, 600, 720, 750, 810}.
For s = 30, we have {45, 135}, since
    s * { max(p, q) <= m < s  : rad(m) | s  }
   = 30*{ max(3, 7) <= m < 30 : rad(m) | 30 }
   = 30*{8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27}
   = {240, 270, 300, 360, 450, 480, 540, 600, 720, 750, 810}.
		

Crossrefs

Programs

  • Mathematica
    nn = 756;
    Select[Select[Range[12, nn], Nor[SquareFreeQ[#], PrimePowerQ[#]] &],
      And[Max[#2, #3] <= #1 < #4, ! AllTrue[#5, # > 1 &]] & @@
        {#1/#4, #2, #3, #4, #5} & @@
        {#1, #2[[2, 1]], #3, Times @@ #2[[All, 1]], #2[[All, -1]]} & @@
        {#, FactorInteger[#], If[OddQ[#], 2,
            q = 3; While[Divisible[#, q], q = NextPrime[q]]; q]} &]

Formula

Union of {k = m*s : rad(m) | s, max(p, q) <= m < s}, where s is in A120944.
{a(n)} = A364702 \ A366250.
{a(n)} = A361098 \ A341645.
Showing 1-8 of 8 results.