cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A025487 Least integer of each prime signature A124832; also products of primorial numbers A002110.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, 180, 192, 210, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 576, 720, 768, 840, 864, 900, 960, 1024, 1080, 1152, 1260, 1296, 1440, 1536, 1680, 1728, 1800, 1920, 2048, 2160, 2304, 2310
Offset: 1

Views

Author

Keywords

Comments

All numbers of the form 2^k1*3^k2*...*p_n^k_n, where k1 >= k2 >= ... >= k_n, sorted.
A111059 is a subsequence. - Reinhard Zumkeller, Jul 05 2010
Choie et al. (2007) call these "Hardy-Ramanujan integers". - Jean-François Alcover, Aug 14 2014
The exponents k1, k2, ... can be read off Abramowitz & Stegun p. 831, column labeled "pi".
For all such sequences b for which it holds that b(n) = b(A046523(n)), the sequence which gives the indices of records in b is a subsequence of this sequence. For example, A002182 which gives the indices of records for A000005, A002110 which gives them for A001221 and A000079 which gives them for A001222. - Antti Karttunen, Jan 18 2019
The prime signature corresponding to a(n) is given in row n of A124832. - M. F. Hasler, Jul 17 2019

Examples

			The first few terms are 1, 2, 2^2, 2*3, 2^3, 2^2*3, 2^4, 2^3*3, 2*3*5, ...
		

Crossrefs

Subsequence of A055932, A191743, and A324583.
Cf. A085089, A101296 (left inverses).
Equals range of values taken by A046523.
Cf. A178799 (first differences), A247451 (squarefree kernel), A146288 (number of divisors).
Rearrangements of this sequence include A036035, A059901, A063008, A077569, A085988, A086141, A087443, A108951, A181821, A181822, A322827, A329886, A329887.
Cf. also array A124832 (row n = prime signature of a(n)) and A304886, A307056.

Programs

  • Haskell
    import Data.Set (singleton, fromList, deleteFindMin, union)
    a025487 n = a025487_list !! (n-1)
    a025487_list = 1 : h [b] (singleton b) bs where
       (_ : b : bs) = a002110_list
       h cs s xs'@(x:xs)
         | m <= x    = m : h (m:cs) (s' `union` fromList (map (* m) cs)) xs'
         | otherwise = x : h (x:cs) (s  `union` fromList (map (* x) (x:cs))) xs
         where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Apr 06 2013
    
  • Maple
    isA025487 := proc(n)
        local pset,omega ;
        pset := sort(convert(numtheory[factorset](n),list)) ;
        omega := nops(pset) ;
        if op(-1,pset) <> ithprime(omega) then
            return false;
        end if;
        for i from 1 to omega-1 do
            if padic[ordp](n,ithprime(i)) < padic[ordp](n,ithprime(i+1)) then
                return false;
            end if;
        end do:
        true ;
    end proc:
    A025487 := proc(n)
        option remember ;
        local a;
        if n = 1 then
            1 ;
        else
            for a from procname(n-1)+1 do
                if isA025487(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A025487(n),n=1..100) ; # R. J. Mathar, May 25 2017
  • Mathematica
    PrimeExponents[n_] := Last /@ FactorInteger[n]; lpe = {}; ln = {1}; Do[pe = Sort@PrimeExponents@n; If[ FreeQ[lpe, pe], AppendTo[lpe, pe]; AppendTo[ln, n]], {n, 2, 2350}]; ln (* Robert G. Wilson v, Aug 14 2004 *)
    (* Second program: generate all terms m <= A002110(n): *)
    f[n_] := {{1}}~Join~
      Block[{lim = Product[Prime@ i, {i, n}],
       ww = NestList[Append[#, 1] &, {1}, n - 1], dec},
       dec[x_] := Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, x]];
       Map[Block[{w = #, k = 1},
          Sort@ Prepend[If[Length@ # == 0, #, #[[1]]],
            Product[Prime@ i, {i, Length@ w}] ] &@ Reap[
             Do[
              If[# < lim,
                 Sow[#]; k = 1,
                 If[k >= Length@ w, Break[], k++]] &@ dec@ Set[w,
                 If[k == 1,
                   MapAt[# + 1 &, w, k],
                   PadLeft[#, Length@ w, First@ #] &@
                     Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1] ]],
               {i, Infinity}] ][[-1]]
    ] &, ww]]; Sort[Join @@ f@ 13] (* Michael De Vlieger, May 19 2018 *)
  • PARI
    isA025487(n)=my(k=valuation(n,2),t);n>>=k;forprime(p=3,default(primelimit),t=valuation(n,p);if(t>k,return(0),k=t);if(k,n/=p^k,return(n==1))) \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    factfollow(n)={local(fm, np, n2);
      fm=factor(n); np=matsize(fm)[1];
      if(np==0,return([2]));
      n2=n*nextprime(fm[np,1]+1);
      if(np==1||fm[np,2]Franklin T. Adams-Watters, Dec 01 2011 */
    
  • PARI
    is(n) = {if(n==1, return(1)); my(f = factor(n));  f[#f~, 1] == prime(#f~) && vecsort(f[, 2],,4) == f[, 2]} \\ David A. Corneth, Feb 14 2019
    
  • PARI
    upto(Nmax)=vecsort(concat(vector(logint(Nmax,2),n,select(t->t<=Nmax,if(n>1,[factorback(primes(#p),Vecrev(p)) || p<-partitions(n)],[1,2]))))) \\ M. F. Hasler, Jul 17 2019
    
  • PARI
    \\ For fast generation of large number of terms, use this program:
    A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980
    A025487list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t); while(lista[i] != u, if(2*lista[i] <= u, listput(lista,2*lista[i]); t = A283980(lista[i]); if(t <= u, listput(lista,t))); i++); vecsort(Vec(lista)); }; \\ Returns a list of terms up to the term 2^e.
    v025487 = A025487list(101);
    A025487(n) = v025487[n];
    for(n=1,#v025487,print1(A025487(n), ", ")); \\ Antti Karttunen, Dec 24 2019
    
  • Sage
    def sharp_primorial(n): return sloane.A002110(prime_pi(n))
    N = 2310
    nmax = 2^floor(log(N,2))
    sorted([j for j in (prod(sharp_primorial(t[0])^t[1] for k, t in enumerate(factor(n))) for n in (1..nmax)) if j <= N])
    # Giuseppe Coppoletta, Jan 26 2015

Formula

What can be said about the asymptotic behavior of this sequence? - Franklin T. Adams-Watters, Jan 06 2010
Hardy & Ramanujan prove that there are exp((2 Pi + o(1))/sqrt(3) * sqrt(log x/log log x)) members of this sequence up to x. - Charles R Greathouse IV, Dec 05 2012
From Antti Karttunen, Jan 18 & Dec 24 2019: (Start)
A085089(a(n)) = n.
A101296(a(n)) = n [which is the first occurrence of n in A101296, and thus also a record.]
A001221(a(n)) = A061395(a(n)) = A061394(n).
A007814(a(n)) = A051903(a(n)) = A051282(n).
a(A101296(n)) = A046523(n).
a(A306802(n)) = A002182(n).
a(n) = A108951(A181815(n)) = A329900(A181817(n)).
If A181815(n) is odd, a(n) = A283980(a(A329904(n))), otherwise a(n) = 2*a(A329904(n)).
(End)
Sum_{n>=1} 1/a(n) = Product_{n>=1} 1/(1 - 1/A002110(n)) = A161360. - Amiram Eldar, Oct 20 2020

Extensions

Offset corrected by Matthew Vandermast, Oct 19 2008
Minor correction by Charles R Greathouse IV, Sep 03 2010

A146290 Triangle T(n,m) read by rows (n >= 1, 0 <= m <= A061394(n)), giving the number of divisors of A025487(n) with m distinct prime factors.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 1, 3, 2, 1, 4, 1, 4, 3, 1, 3, 3, 1, 1, 5, 1, 4, 4, 1, 5, 4, 1, 4, 5, 2, 1, 6, 1, 5, 6, 1, 6, 5, 1, 5, 7, 3, 1, 7, 1, 6, 8, 1, 5, 8, 4, 1, 7, 6, 1, 4, 6, 4, 1, 1, 6, 9, 1, 6, 9, 4, 1, 8, 1, 7, 10, 1, 6, 11, 6, 1, 8, 7, 1, 5, 9, 7, 2, 1, 7, 12, 1, 7, 11, 5, 1, 9, 1, 8, 12, 1, 7, 14
Offset: 1

Views

Author

Matthew Vandermast, Nov 11 2008

Keywords

Comments

The formula used in obtaining the A025487(n)th row (see below) also gives the number of divisors of the k-th power of A025487(n).
Every row that appears in A146289 appears exactly once in the table. Rows appear in order of first appearance in A146289.
T(n,0)=1.

Examples

			Rows begin:
  1;
  1,1;
  1,2;
  1,2,1;
  1,3;
  1,3,2;
  1,4;
  1,4,3;...
36's 9 divisors include 1 divisor with 0 distinct prime factors (1); 4 with 1 (2, 3, 4 and 9); and 4 with 2 (6, 12, 18 and 36). Since 36 = A025487(11), the 11th row of the table therefore reads (1, 4, 4). These are the positive coefficients of the polynomial equation 1 + 4k + 4k^2 = (1 + 2k)(1 + 2k), derived from the prime factorization of 36 (namely, 2^2*3^2).
		

Crossrefs

For the number of distinct prime factors of n, see A001221.
Row sums equal A146288(n). T(n, 1)=A036041(n) for n>1. T(n, A061394(n))=A052306(n).
Row A098719(n) of this table is identical to row n of A007318.
Cf. A146289. Also cf. A146291, A146292.

Formula

If A025487(n)'s canonical factorization into prime powers is Product p^e(p), then T(n, m) is the coefficient of k^m in the polynomial expansion of Product_p (1 + ek).

A146292 Triangle T(n,m) read by rows (n >= 1, 0 <= m <= A036041(n)), giving the number of divisors of A025487(n) with m prime factors (counted with multiplicity).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 2, 2, 2, 2, 1, 1, 3, 4, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 3, 4, 4, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 2, 1, 1, 3, 5, 5, 3, 1, 1, 2, 2, 2, 2
Offset: 1

Views

Author

Matthew Vandermast, Nov 11 2008

Keywords

Comments

All rows are palindromic. T(n, 0) = T(n, A036041(n)) = 1.
Every row that appears in A146291 appears exactly once in the table. Rows appear in order of first appearance in A146291.

Examples

			Rows begin:
  1;
  1,1;
  1,1,1;
  1,2,1;
  1,1,1,1;
  1,2,2,1;
  1,1,1,1,1;...
36's 9 divisors include 1 divisor with 0 total prime factors (1);, 2 with 1 (2 and 3); 3 with 2 (4, 6 and 9); 2 with 3 (12 and 18); and 1 with 4 (36). Since 36 = A025487(11), the 11th row of the table therefore reads (1, 2, 3, 2, 1). These are the positive coefficients of the polynomial 1 + 2k + 3k^2 + 2k^3 + (1)k^4 = (1 + k + k^2)(1 + k + k^2), derived from the prime factorization of 36 (namely, 2^2*3^2).
		

Crossrefs

For the number of prime factors of n counted with multiplicity, see A001222.
Row sums equal A146288(n). T(n, 1) = A061394(n) for n>1.
Row A098719(n) of this table is identical to row n of A007318.
Cf. A146291. Also cf. A146289, A146290.

Formula

If A025487(n)'s canonical factorization into prime powers is the product of p^e(p), then T(n, m) is the coefficient of k^m in the polynomial expansion of Product_p (sum_{i=0..e} k^i).

A375195 Numbers k such that A025487(k) and A025487(k+1) have an equal number of divisors.

Original entry on oeis.org

4, 8, 15, 22, 69, 116, 122, 134, 135, 168, 208, 278, 400, 453, 538, 584, 718, 1019, 1409, 1671, 1799, 2035, 2417, 2541, 2595, 2783, 3424, 3809, 3860, 4415, 5628, 6267, 6672, 6745, 6872, 6873, 7277, 9436, 9845, 10182, 10191, 10936, 11272, 11472, 12105, 16139, 16277
Offset: 1

Views

Author

Amiram Eldar, Aug 04 2024

Keywords

Comments

Numbers k such that A146288(k) = A146288(k+1).
The corresponding values of A146288(k) are 4, 8, 12, 16, 48, 48, 96, 80, 80, ... .
The corresponding values of A025487(k) are 6, 24, 72, 210, 5400, ... (A375196).
Numbers k such that A146288(k) = A146288(k+1) = A146288(k+2) are 134, 6872, 6699401, 12421946, ... .

Examples

			4 is a term since A146288(4) = A146288(5) = 4.
		

Crossrefs

Programs

  • Mathematica
    With[{lps = Cases[Import["https://oeis.org/A025487/b025487.txt", "Table"], {, }][[;; , 2]]}, Position[Differences[DivisorSigma[0, lps]], 0] // Flatten]

Formula

A025487(a(n)) = A375196(n).

A375196 Smaller of two successive terms of A025487 that have an equal number of divisors.

Original entry on oeis.org

6, 24, 72, 210, 5400, 30720, 36960, 51840, 53760, 120120, 264600, 887040, 3991680, 6912000, 14968800, 22118400, 58198140, 319334400, 1703116800, 4151347200, 6273146880, 12247200000, 31757806080, 42343741440, 47636709120, 70572902400, 238378140000, 442810368000
Offset: 1

Views

Author

Amiram Eldar, Aug 04 2024

Keywords

Comments

There are runs of three successive terms of A025487 that have an equal number of divisors. The smallest elements in these runs are 51840, 17149215283200, 63147292984115358771227840741376000000000, ... . Are there such runs of four successive terms?

Examples

			6 is a term since 6 and 8 are two successive terms of A025487, and they have an equal number of divisors: A000005(6) = A000005(8) = 4.
		

Crossrefs

Programs

  • Mathematica
    With[{lps = Cases[Import["https://oeis.org/A025487/b025487.txt", "Table"], {, }][[;; , 2]]}, lps[[Position[Differences[DivisorSigma[0, lps]], 0] // Flatten]]]

Formula

a(n) = A025487(A375195(n)).

A356425 Sum of divisors of numbers of least prime signature: a(n) = A000203(A025487(n)).

Original entry on oeis.org

1, 3, 7, 12, 15, 28, 31, 60, 72, 63, 91, 124, 168, 127, 195, 252, 360, 255, 403, 546, 508, 576, 600, 744, 511, 819, 1170, 1020, 1344, 1240, 1512, 1023, 1651, 2418, 2044, 2880, 2520, 2821, 3048, 2047, 3600, 3315, 4368, 3751, 4914, 4092, 5952, 5080, 6045, 6120
Offset: 1

Views

Author

Hal M. Switkay, Dec 11 2022

Keywords

Comments

This sequence is to A146288 as sigma (A000203, the sum of divisors function) is to tau (A000005, the number of divisors function).

Crossrefs

Programs

  • Mathematica
    s = {1}; Do[If[GreaterEqual @@ (f = FactorInteger[n])[[;;,2]] && PrimePi[f[[-1,1]]] == Length[f], AppendTo[s, DivisorSigma[1,n]]], {n, 2, 2000}]; s (* Amiram Eldar, Dec 12 2022 *)

A359182 Totient of numbers of least prime signature: a(n) = A000010(A025487(n)).

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 8, 8, 8, 16, 12, 16, 16, 32, 24, 32, 32, 64, 48, 48, 64, 48, 72, 64, 128, 96, 96, 128, 96, 144, 128, 256, 192, 192, 256, 192, 288, 240, 256, 512, 288, 384, 288, 432, 384, 512, 384, 576, 480, 512, 1024, 576, 768, 480, 576, 864, 768, 1024, 768
Offset: 1

Views

Author

Hal M. Switkay, Dec 18 2022

Keywords

Comments

This sequence is to A146288 as phi (A000010, the totient function) is to tau (A000005, the number of divisors function).

Crossrefs

Programs

  • Mathematica
    s = {1}; Do[If[GreaterEqual @@ (f = FactorInteger[n])[[;; , 2]] && PrimePi[f[[-1, 1]]] == Length[f], AppendTo[s, EulerPhi[n]]], {n, 2, 3500}]; s (* Amiram Eldar, Dec 19 2022 *)
  • PARI
    is(n) = {if(n==1, return(1)); my(f = factor(n));  f[#f~, 1] == prime(#f~) && vecsort(f[, 2], , 4) == f[, 2]}; \\ A025487
    lista(nn) = apply(eulerphi, select(is, [1..nn])); \\ Michel Marcus, Dec 19 2022
Showing 1-7 of 7 results.