cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A025487 Least integer of each prime signature A124832; also products of primorial numbers A002110.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, 180, 192, 210, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 576, 720, 768, 840, 864, 900, 960, 1024, 1080, 1152, 1260, 1296, 1440, 1536, 1680, 1728, 1800, 1920, 2048, 2160, 2304, 2310
Offset: 1

Views

Author

Keywords

Comments

All numbers of the form 2^k1*3^k2*...*p_n^k_n, where k1 >= k2 >= ... >= k_n, sorted.
A111059 is a subsequence. - Reinhard Zumkeller, Jul 05 2010
Choie et al. (2007) call these "Hardy-Ramanujan integers". - Jean-François Alcover, Aug 14 2014
The exponents k1, k2, ... can be read off Abramowitz & Stegun p. 831, column labeled "pi".
For all such sequences b for which it holds that b(n) = b(A046523(n)), the sequence which gives the indices of records in b is a subsequence of this sequence. For example, A002182 which gives the indices of records for A000005, A002110 which gives them for A001221 and A000079 which gives them for A001222. - Antti Karttunen, Jan 18 2019
The prime signature corresponding to a(n) is given in row n of A124832. - M. F. Hasler, Jul 17 2019

Examples

			The first few terms are 1, 2, 2^2, 2*3, 2^3, 2^2*3, 2^4, 2^3*3, 2*3*5, ...
		

Crossrefs

Subsequence of A055932, A191743, and A324583.
Cf. A085089, A101296 (left inverses).
Equals range of values taken by A046523.
Cf. A178799 (first differences), A247451 (squarefree kernel), A146288 (number of divisors).
Rearrangements of this sequence include A036035, A059901, A063008, A077569, A085988, A086141, A087443, A108951, A181821, A181822, A322827, A329886, A329887.
Cf. also array A124832 (row n = prime signature of a(n)) and A304886, A307056.

Programs

  • Haskell
    import Data.Set (singleton, fromList, deleteFindMin, union)
    a025487 n = a025487_list !! (n-1)
    a025487_list = 1 : h [b] (singleton b) bs where
       (_ : b : bs) = a002110_list
       h cs s xs'@(x:xs)
         | m <= x    = m : h (m:cs) (s' `union` fromList (map (* m) cs)) xs'
         | otherwise = x : h (x:cs) (s  `union` fromList (map (* x) (x:cs))) xs
         where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Apr 06 2013
    
  • Maple
    isA025487 := proc(n)
        local pset,omega ;
        pset := sort(convert(numtheory[factorset](n),list)) ;
        omega := nops(pset) ;
        if op(-1,pset) <> ithprime(omega) then
            return false;
        end if;
        for i from 1 to omega-1 do
            if padic[ordp](n,ithprime(i)) < padic[ordp](n,ithprime(i+1)) then
                return false;
            end if;
        end do:
        true ;
    end proc:
    A025487 := proc(n)
        option remember ;
        local a;
        if n = 1 then
            1 ;
        else
            for a from procname(n-1)+1 do
                if isA025487(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A025487(n),n=1..100) ; # R. J. Mathar, May 25 2017
  • Mathematica
    PrimeExponents[n_] := Last /@ FactorInteger[n]; lpe = {}; ln = {1}; Do[pe = Sort@PrimeExponents@n; If[ FreeQ[lpe, pe], AppendTo[lpe, pe]; AppendTo[ln, n]], {n, 2, 2350}]; ln (* Robert G. Wilson v, Aug 14 2004 *)
    (* Second program: generate all terms m <= A002110(n): *)
    f[n_] := {{1}}~Join~
      Block[{lim = Product[Prime@ i, {i, n}],
       ww = NestList[Append[#, 1] &, {1}, n - 1], dec},
       dec[x_] := Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, x]];
       Map[Block[{w = #, k = 1},
          Sort@ Prepend[If[Length@ # == 0, #, #[[1]]],
            Product[Prime@ i, {i, Length@ w}] ] &@ Reap[
             Do[
              If[# < lim,
                 Sow[#]; k = 1,
                 If[k >= Length@ w, Break[], k++]] &@ dec@ Set[w,
                 If[k == 1,
                   MapAt[# + 1 &, w, k],
                   PadLeft[#, Length@ w, First@ #] &@
                     Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1] ]],
               {i, Infinity}] ][[-1]]
    ] &, ww]]; Sort[Join @@ f@ 13] (* Michael De Vlieger, May 19 2018 *)
  • PARI
    isA025487(n)=my(k=valuation(n,2),t);n>>=k;forprime(p=3,default(primelimit),t=valuation(n,p);if(t>k,return(0),k=t);if(k,n/=p^k,return(n==1))) \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    factfollow(n)={local(fm, np, n2);
      fm=factor(n); np=matsize(fm)[1];
      if(np==0,return([2]));
      n2=n*nextprime(fm[np,1]+1);
      if(np==1||fm[np,2]Franklin T. Adams-Watters, Dec 01 2011 */
    
  • PARI
    is(n) = {if(n==1, return(1)); my(f = factor(n));  f[#f~, 1] == prime(#f~) && vecsort(f[, 2],,4) == f[, 2]} \\ David A. Corneth, Feb 14 2019
    
  • PARI
    upto(Nmax)=vecsort(concat(vector(logint(Nmax,2),n,select(t->t<=Nmax,if(n>1,[factorback(primes(#p),Vecrev(p)) || p<-partitions(n)],[1,2]))))) \\ M. F. Hasler, Jul 17 2019
    
  • PARI
    \\ For fast generation of large number of terms, use this program:
    A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980
    A025487list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t); while(lista[i] != u, if(2*lista[i] <= u, listput(lista,2*lista[i]); t = A283980(lista[i]); if(t <= u, listput(lista,t))); i++); vecsort(Vec(lista)); }; \\ Returns a list of terms up to the term 2^e.
    v025487 = A025487list(101);
    A025487(n) = v025487[n];
    for(n=1,#v025487,print1(A025487(n), ", ")); \\ Antti Karttunen, Dec 24 2019
    
  • Sage
    def sharp_primorial(n): return sloane.A002110(prime_pi(n))
    N = 2310
    nmax = 2^floor(log(N,2))
    sorted([j for j in (prod(sharp_primorial(t[0])^t[1] for k, t in enumerate(factor(n))) for n in (1..nmax)) if j <= N])
    # Giuseppe Coppoletta, Jan 26 2015

Formula

What can be said about the asymptotic behavior of this sequence? - Franklin T. Adams-Watters, Jan 06 2010
Hardy & Ramanujan prove that there are exp((2 Pi + o(1))/sqrt(3) * sqrt(log x/log log x)) members of this sequence up to x. - Charles R Greathouse IV, Dec 05 2012
From Antti Karttunen, Jan 18 & Dec 24 2019: (Start)
A085089(a(n)) = n.
A101296(a(n)) = n [which is the first occurrence of n in A101296, and thus also a record.]
A001221(a(n)) = A061395(a(n)) = A061394(n).
A007814(a(n)) = A051903(a(n)) = A051282(n).
a(A101296(n)) = A046523(n).
a(A306802(n)) = A002182(n).
a(n) = A108951(A181815(n)) = A329900(A181817(n)).
If A181815(n) is odd, a(n) = A283980(a(A329904(n))), otherwise a(n) = 2*a(A329904(n)).
(End)
Sum_{n>=1} 1/a(n) = Product_{n>=1} 1/(1 - 1/A002110(n)) = A161360. - Amiram Eldar, Oct 20 2020

Extensions

Offset corrected by Matthew Vandermast, Oct 19 2008
Minor correction by Charles R Greathouse IV, Sep 03 2010

A085089 Number of distinct prime signatures arising up to n.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jul 02 2003

Keywords

Crossrefs

Cf. A025487.
Cf. A025488(n) = a(2^n); A124832 (table of the distinct prime signatures in the order they occur).

Programs

  • PARI
    A085089(n)=#Set(apply(t->vecsort(factor(t)[,2]), [1..n])) \\ Not very efficient for large n > 10^5, but very quick up to the point where stack overflow occurs. - M. F. Hasler, Jul 16 2019

Extensions

More terms from Ray Chandler, Aug 17 2003

A025488 Number of distinct prime signatures of the positive integers up to 2^n.

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 14, 18, 25, 32, 40, 51, 63, 80, 98, 119, 145, 173, 207, 248, 292, 346, 404, 473, 552, 639, 742, 855, 984, 1129, 1289, 1477, 1681, 1912, 2170, 2452, 2771, 3121, 3514, 3951, 4426, 4955, 5536, 6182, 6898, 7674, 8535, 9470, 10500, 11633, 12869
Offset: 0

Views

Author

Keywords

Comments

The distinct prime signatures, in the order in which they occur, are listed in A124832. - M. F. Hasler, Jul 16 2019
The subsequence a(n) = A085089(2^n) is strictly increasing since it counts at least the additional prime signature (n) which did not occur for the previously considered numbers. All other partitions of n are prime signatures of numbers larger than 2^n and therefore counted only as part of later terms. - M. F. Hasler, Jul 17 2019

Examples

			From _M. F. Hasler_, Jul 16 2019: (Start)
For n = 0, the only integer k to be considered is 1, so the only prime signature is the empty one, (), whence a(0) = 1.
For n = 1, the integers k to be considered are {1, 2}; the prime signatures are {(), (1)}, whence a(1) = 2.
For n = 2, the integers k to be considered are {1, 2, 3, 4}; the distinct prime signatures are {(), (1), (2)}, whence a(2) = 3.
For n = 3, the integers k to be considered are {1, 2, 3, 4, 5, 6, 7, 8}; the distinct prime signatures are {(), (1), (2), (1,1), (3)}, whence a(3) = 5. (End)
		

Crossrefs

A025487(a(n)) = 2^n.
Partial sums of A056099.

Programs

Formula

a(n) = Sum_{k=0..n} A056099(k). - M. F. Hasler, Jul 16 2019
a(n) = A085089(2^n). - M. F. Hasler, Jul 17 2019

Extensions

Name edited by M. F. Hasler, Jul 16 2019

A124829 Table of exponents of prime factorizations in A055932.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 4, 1, 2, 3, 1, 1, 1, 1, 5, 2, 2, 4, 1, 1, 3, 2, 1, 1, 6, 3, 2, 1, 2, 1, 5, 1, 2, 3, 3, 1, 1, 7, 4, 2, 1, 1, 2, 1, 4, 2, 2, 1, 6, 1, 1, 1, 1, 1, 3, 3, 4, 1, 1, 8, 1, 3, 1, 5, 2, 2, 1, 2, 2, 4, 3, 2, 1, 7, 1, 2, 1, 1, 1, 4, 3, 1, 2, 2, 5, 1, 1, 1, 5, 9, 2, 3, 1, 6, 2, 3, 1, 2, 1, 2, 1, 1, 3, 4
Offset: 1

Views

Author

Keywords

Comments

This is an enumeration of all compositions. This sequence contains all finite sequences of positive integers.

Examples

			From _Michael De Vlieger_, Feb 06 2020: (Start)
Table begins:
   n   A055932(n+1)  row n
   ---------------------
   1    2            1;
   2    4            2;
   3    6            1, 1;
   4    8            3;
   5   12            2, 1;
   6   16            4;
   7   18            1, 2;
   8   24            3, 1;
   9   30            1, 1, 1;
  10   32            5;
  11   36            2, 2;
  12   48            4, 1;
  13   54            1, 3;
  14   60            2, 1, 1;
  15   64            6;
  ...  (End)
		

Crossrefs

Cf. A055932, A124830 (row lengths), A124831 (row sums), A124832, A066099.

Programs

  • Mathematica
    Map[FactorInteger[#][[All, -1]] &, Select[Range[10^3], Last[#] == Length[#] &@ PrimePi@ FactorInteger[#][[All, 1]] &]] // Flatten (* Michael De Vlieger, Feb 06 2020 *)

Formula

A055932(n) = Product_k Prime(k)^T(n,k).

A304886 Irregular triangle where row n contains indices k where the product of A002110(k) = A025487(n).

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 1, 1, 1, 1, 1, 2, 4, 2, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2
Offset: 1

Views

Author

Michael De Vlieger, May 21 2018

Keywords

Comments

Row n consists of terms k such that A025487(n) = the product of primorials p_k#, the k in row n written least to greatest k.
For m = A025487(n) in A000079 (i.e., m is an integer power of 2), row n contains A000079(m) 1s.
For m = A025487(n) in A002110 (i.e., m is a primorial) row n contains a single term k that is the index of m in A002110.

Examples

			Triangle begins as in rightmost column, which lists the terms that occur on row n. Maximum value of each row is given by A061394(n).
   n  A025487(n)   Row n
--------------------------------
   1        1      0
   2        2      1
   3        4      1,1
   4        6      2
   5        8      1,1,1
   6       12      1,2
   7       16      1,1,1,1
   8       24      1,1,2
   9       30      3
  10       32      1,1,1,1,1
  11       36      2,2
  12       48      1,1,1,2
  13       60      1,3
  14       64      1,1,1,1,1,1
  15       72      1,2,2
  16       96      1,1,1,1,2
  17      120      1,1,3
  18      128      1,1,1,1,1,1,1
  19      144      1,1,2,2
  20      180      2,3
  ...
		

Crossrefs

Cf. A025487, A051282 (row lengths), A061394 (row maximum), A124832, A181815.
Cf. also A307056.

Programs

  • Mathematica
    (* Simple (A025487(n) < 10^5): *)
    {{0}}~Join~Map[With[{w = #}, Reverse@ Array[Function[k, Count[w, _?(# >= k &)] ], Max@ w]] &, Select[Array[{#, FactorInteger[#][[All, -1]]} &, 400], Times @@ Boole@ {#1 == Times @@ MapIndexed[Prime[First@ #2]^#1 &, #3], #2 == #3} == 1 & @@ {#1, #2, Sort[#2, Greater]} & @@ # &][[All, -1]] ]
    (* Efficient (A025487(n) < 10^23): *)
    f[n_] := Block[{ww, g, h},
      g[x_] := Apply[Times,
        MapIndexed[Prime[First@ #2]^#1 &, x]];
      h[x_] := Reverse@
        Array[Function[k, Count[x, _?(# >= k &)] ], Max@ x];
      ww = NestList[Append[#, 1] &, {1}, # - 1] &[-2 +
         Length@ NestWhileList[NextPrime@ # &, 1,
         Times @@ {##} <= n &, All] ];
      Map[h, SortBy[Flatten[#, 1], g]] &@
       Map[Block[{w = #, k = 1},
          Apply[
             Join, {{ConstantArray[1, Length@ w]},
               If[Length@ # == 0, #, #[[1]]] }] &@ Reap[
             Do[
              If[# < n,
                Sow[w]; k = 1,
                 If[k >= Length@ w, Break[], k++]] &@
                   g@ Set[w,
                   If[k == 1,
                     MapAt[# + 1 &, w, k],
                     PadLeft[#, Length@ w, First@ #] &@
                       Drop[MapAt[# + Boole[i > 1] &, w, k],
                        k - 1] ]], {i, Infinity}] ][[-1]] ] &, ww]]; {{0}}~Join~f@ 400

Formula

For row n > 1, Product_{k=1..A051282(n)} A000040(T(n,k)) = A181815(n). [Product of primes indexed by nonzero terms of row n is equal to A181815(n)] - Antti Karttunen, Dec 28 2019

A369168 Numbers k such that A000005(k) = A000688(k).

Original entry on oeis.org

1, 16, 81, 625, 1296, 2401, 10000, 14641, 23040, 28561, 32256, 38400, 38416, 50625, 50688, 59904, 75264, 78336, 83521, 87552, 89600, 105984, 125440, 130321, 133632, 140800, 142848, 166400, 170496, 185856, 188928, 194481, 198144, 216576, 217600, 234256, 243200
Offset: 1

Views

Author

Amiram Eldar, Jan 15 2024

Keywords

Comments

The asymptotic density of this sequence is 0 (Ivić, 1983).
If k is a term, then every number with the same prime signature (A124832) as k is a term. The least term of each prime signature is given in A369169.

References

  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter II, page 73.

Crossrefs

Subsequence of A369170.
A369169 is a subsequence.

Programs

  • Mathematica
    Select[Range[250000], DivisorSigma[0, #] == FiniteAbelianGroupCount[#] &]
  • PARI
    is(n) = {my(e = factor(n)[,2]); vecprod(apply(x -> x+1, e)) == vecprod(apply(numbpart, e));}

Formula

x * log(log(x))/log(x) << N(x) << x / log(x)^(1-eps) for every 0 < eps < 1, where N(x) is the number of terms not exceeding x (Ivić, 1983).

A369169 Terms k of A025487 such that A000005(k) = A000688(k).

Original entry on oeis.org

1, 16, 1296, 23040, 810000, 7257600, 16934400, 283852800, 1437004800, 1944810000, 13970880000, 30735936000, 232475443200, 852409958400, 1765360396800, 3269185920000, 7192209024000, 8029628006400, 28473963210000, 97893956160000, 181803061440000, 1086822696960000
Offset: 1

Views

Author

Amiram Eldar, Jan 15 2024

Keywords

Comments

Since both A000005(k) and A000688(k) depend only on the prime signature of k (A124832), if k is a term of this sequence then every number m such that A046523(m) = k is a term of A369168.
From David A. Corneth, Jan 15 2024: (Start)
16 | a(n) for n > 1.
This sequence contains A002110(n)^4. (End)

Examples

			16 is in the sequence as 16 has 5 divisors (1, 2, 4, 8, 16) and 5 factorizations into prime powers (16 = 2*8 = 4*4 = 2*2*4 = 2*2*2*2).
		

References

  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter II, page 73.

Crossrefs

Intersection of A025487 and A369168.

Programs

  • Mathematica
    lps = Cases[Import["https://oeis.org/A025487/b025487.txt", "Table"], {, }][[;; , 2]]; Select[lps, DivisorSigma[0, #] == FiniteAbelianGroupCount[#] &]

A212175 List of exponents >= 2 in canonical prime factorization of A025487(n) (first integer of each prime signature), in nonincreasing order, or 0 if no such exponent exists.

Original entry on oeis.org

0, 0, 2, 0, 3, 2, 4, 3, 0, 5, 2, 2, 4, 2, 6, 3, 2, 5, 3, 7, 4, 2, 2, 2, 6, 0, 3, 3, 4, 8, 5, 2, 3, 2, 7, 2, 4, 3, 5, 9, 6, 2, 4, 2, 8, 3, 5, 3, 2, 2, 2, 6, 10, 3, 3, 7, 2, 2, 2, 4, 4, 5, 2, 9, 4, 6, 3, 3, 2, 2, 7, 11, 4, 3, 8, 2, 0, 3, 2, 5, 4, 6, 2, 10, 5, 7, 3
Offset: 1

Views

Author

Matthew Vandermast, Jun 03 2012

Keywords

Comments

Length of row n equals A212178(n) if A212178(n) is positive, or 1 if A212178(n) = 0.
Row n of table represents second signature of A025487(n) (cf. A212172). The use of 0 in the table to represent numbers with no exponents >=2 in their prime factorization accords with the usual OEIS practice of using 0 to represent nonexistent elements when possible. In comments, the second signature of squarefree numbers is represented as { }.

Examples

			240 = 2^4*3*5 has 1 exponent in its canonical prime factorization that equals or exceeds 2 (namely, 4). Hence, 240's second signature is {4}. Since 240 = A025487(24), row 24 of the table represents the second signature {4}.
		

Crossrefs

A124832 gives all positive exponents in prime factorization of A025487(n) for n > 1.

Formula

a(n) = A212172(A025487(n)).

A353248 Irregular table, read by rows, where row n is the concatenation of all prime signatures leading to n divisors, in reverse lexicographic order.

Original entry on oeis.org

1, 2, 3, 1, 1, 4, 5, 2, 1, 6, 7, 3, 1, 1, 1, 1, 8, 2, 2, 9, 4, 1, 10, 11, 5, 1, 3, 2, 2, 1, 1, 12, 13, 6, 1, 14, 4, 2, 15, 7, 1, 3, 3, 3, 1, 1, 1, 1, 1, 1, 16, 17, 8, 1, 5, 2, 2, 2, 1, 18, 19, 9, 1, 4, 3, 4, 1, 1, 20, 6, 2, 21, 10, 1, 22, 23, 11, 1, 7, 2, 5, 3, 5, 1, 1, 3, 2, 1
Offset: 1

Views

Author

M. F. Hasler, Apr 08 2022

Keywords

Comments

The number-of-divisors function d = A000005 is multiplicative with d(p^e) = e+1. Therefore, a prime signature (e1, e2, ..., eN) which yields a given number of divisors corresponds to a factorization (e1+1)*...*(eN+1) of that number. Following the usual convention, we only consider prime signatures with decreasing exponents (e1 >= e2 >= ... >= eN). Furthermore, we list them in reverse lexicographic order, i.e., largest e1 first, etc.
The sequence starts with row 1 which has length 0 (the only number having only 1 divisor is 1 which has the empty product as prime factorization), so the first term a(1) = 1 is the first element of row 2. Here and thereafter, the first element of row n is easily recognized as the first occurrence of n-1, which is the only element of the row (and therefore followed by n) iff n is prime.

Examples

			Table begins:
row n | prime signatures
   1  | ()
   2  | (1)
   3  | (2)
   4  | (3), (1,1)
   5  | (4)
   6  | (5), (2,1)
   7  | (6)
   8  | (7), (3,1), (1,1,1)
   9  | (8), (2,2)
  10  | (9), (4,1)
  11  | (10)
  12  | (11), (5,1), (3,2), (2,1,1)
		

Crossrefs

Cf. A000005 (d = tau = number-of-divisors function).
Cf. A025487 (products of primorial numbers, representatives of prime signatures), A046523 (representative of prime signature of n), A118914, A212171 and A124010 (prime signature of n), A124832 (prime signatures listed in order of representatives A025487), A080577 (partitions in grad.rev.lex order), A036036 (partitions in rev.lex order).

Programs

  • PARI
    A353248_row(n, M=n)={if(n>1, my(f=factor(n)~, m=f[1,#f], L=List()); fordiv(n, d, n < m*d && break; n > M*d || foreach(self()(d, n/d), S, listput(L,concat(n/d-1,S)))); Vec(L), [[]])}

A368448 Positive integers k such that there is no m different from k where both s(k) = s(m) and s(k+1) = s(m+1), where s(k) is the prime signature of k.

Original entry on oeis.org

1, 2, 3, 4, 7, 8, 15, 16, 24, 26, 27, 31, 32, 35, 48, 63, 64, 80, 99, 124, 127, 128, 224, 242, 243, 255, 256, 288, 343, 511, 512, 528, 575, 624, 675, 728, 783, 960, 999, 1023, 1024, 1088, 1295, 1331, 2047, 2048, 2186, 2187, 2208, 2303, 2400, 3375, 3968, 4095, 4096
Offset: 1

Views

Author

Jon E. Schoenfield, Dec 24 2023

Keywords

Comments

In other words, numbers k that are uniquely identified by the values of the ordered pair (s(k), s(k+1)), where s(k) is the prime signature of k.
Other than the first two terms, every term <= 4096 is either a proper power (a number of the form b^e with e > 1) or one less than a proper power.
For the analogous sequence using the number of divisors rather than the prime signature, see A161460.

Examples

			The prime factorizations of k = 15 and k+1 = 16 are 3 * 5 and 2^4, respectively, so their prime signatures can be represented as [1,1] and [4], respectively. If any ordered pair of consecutive integers m and m+1 has this same ordered pair of prime signatures, then m+1 = p^4 for some prime p, so m = p^4 - 1 = (p-1)*(p+1)*(p^2+1), which is a multiple of 16 for any odd prime p, so the prime signature of m cannot be [1,1] unless the prime p is even, i.e., p = 2, so m = 2^4 - 1 = 15; there is no m other than k = 15 that yields the same pair of prime signatures, so k = 15 is a term of the sequence.
k = 125 is not a term of the sequence: 125 = 5^3 and 126 = 2 * 3^2 * 7, and the same pair of prime signatures occurs for m and m+1 at m = 67^3 = 300763; m+1 = 300764 = 2^2 * 17 * 4423.
		

Crossrefs

Cf. A124832 (prime signatures), A161460.
Showing 1-10 of 11 results. Next