cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A056099 First differences of A025488 (binary order for least prime signatures).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 4, 7, 7, 8, 11, 12, 17, 18, 21, 26, 28, 34, 41, 44, 54, 58, 69, 79, 87, 103, 113, 129, 145, 160, 188, 204, 231, 258, 282, 319, 350, 393, 437, 475, 529, 581, 646, 716, 776, 861, 935, 1030, 1133, 1236, 1358, 1476, 1605, 1763, 1904, 2089, 2267, 2460
Offset: 0

Views

Author

Alford Arnold, Jul 29 2000

Keywords

Comments

a(n) counts entries of A025487 starting a new row after each power of two.

Crossrefs

Extensions

More terms from Sascha Kurz, Mar 25 2002
Extended by Ray Chandler, Aug 11 2010

A025487 Least integer of each prime signature A124832; also products of primorial numbers A002110.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, 180, 192, 210, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 576, 720, 768, 840, 864, 900, 960, 1024, 1080, 1152, 1260, 1296, 1440, 1536, 1680, 1728, 1800, 1920, 2048, 2160, 2304, 2310
Offset: 1

Views

Author

Keywords

Comments

All numbers of the form 2^k1*3^k2*...*p_n^k_n, where k1 >= k2 >= ... >= k_n, sorted.
A111059 is a subsequence. - Reinhard Zumkeller, Jul 05 2010
Choie et al. (2007) call these "Hardy-Ramanujan integers". - Jean-François Alcover, Aug 14 2014
The exponents k1, k2, ... can be read off Abramowitz & Stegun p. 831, column labeled "pi".
For all such sequences b for which it holds that b(n) = b(A046523(n)), the sequence which gives the indices of records in b is a subsequence of this sequence. For example, A002182 which gives the indices of records for A000005, A002110 which gives them for A001221 and A000079 which gives them for A001222. - Antti Karttunen, Jan 18 2019
The prime signature corresponding to a(n) is given in row n of A124832. - M. F. Hasler, Jul 17 2019

Examples

			The first few terms are 1, 2, 2^2, 2*3, 2^3, 2^2*3, 2^4, 2^3*3, 2*3*5, ...
		

Crossrefs

Subsequence of A055932, A191743, and A324583.
Cf. A085089, A101296 (left inverses).
Equals range of values taken by A046523.
Cf. A178799 (first differences), A247451 (squarefree kernel), A146288 (number of divisors).
Rearrangements of this sequence include A036035, A059901, A063008, A077569, A085988, A086141, A087443, A108951, A181821, A181822, A322827, A329886, A329887.
Cf. also array A124832 (row n = prime signature of a(n)) and A304886, A307056.

Programs

  • Haskell
    import Data.Set (singleton, fromList, deleteFindMin, union)
    a025487 n = a025487_list !! (n-1)
    a025487_list = 1 : h [b] (singleton b) bs where
       (_ : b : bs) = a002110_list
       h cs s xs'@(x:xs)
         | m <= x    = m : h (m:cs) (s' `union` fromList (map (* m) cs)) xs'
         | otherwise = x : h (x:cs) (s  `union` fromList (map (* x) (x:cs))) xs
         where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Apr 06 2013
    
  • Maple
    isA025487 := proc(n)
        local pset,omega ;
        pset := sort(convert(numtheory[factorset](n),list)) ;
        omega := nops(pset) ;
        if op(-1,pset) <> ithprime(omega) then
            return false;
        end if;
        for i from 1 to omega-1 do
            if padic[ordp](n,ithprime(i)) < padic[ordp](n,ithprime(i+1)) then
                return false;
            end if;
        end do:
        true ;
    end proc:
    A025487 := proc(n)
        option remember ;
        local a;
        if n = 1 then
            1 ;
        else
            for a from procname(n-1)+1 do
                if isA025487(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A025487(n),n=1..100) ; # R. J. Mathar, May 25 2017
  • Mathematica
    PrimeExponents[n_] := Last /@ FactorInteger[n]; lpe = {}; ln = {1}; Do[pe = Sort@PrimeExponents@n; If[ FreeQ[lpe, pe], AppendTo[lpe, pe]; AppendTo[ln, n]], {n, 2, 2350}]; ln (* Robert G. Wilson v, Aug 14 2004 *)
    (* Second program: generate all terms m <= A002110(n): *)
    f[n_] := {{1}}~Join~
      Block[{lim = Product[Prime@ i, {i, n}],
       ww = NestList[Append[#, 1] &, {1}, n - 1], dec},
       dec[x_] := Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, x]];
       Map[Block[{w = #, k = 1},
          Sort@ Prepend[If[Length@ # == 0, #, #[[1]]],
            Product[Prime@ i, {i, Length@ w}] ] &@ Reap[
             Do[
              If[# < lim,
                 Sow[#]; k = 1,
                 If[k >= Length@ w, Break[], k++]] &@ dec@ Set[w,
                 If[k == 1,
                   MapAt[# + 1 &, w, k],
                   PadLeft[#, Length@ w, First@ #] &@
                     Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1] ]],
               {i, Infinity}] ][[-1]]
    ] &, ww]]; Sort[Join @@ f@ 13] (* Michael De Vlieger, May 19 2018 *)
  • PARI
    isA025487(n)=my(k=valuation(n,2),t);n>>=k;forprime(p=3,default(primelimit),t=valuation(n,p);if(t>k,return(0),k=t);if(k,n/=p^k,return(n==1))) \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    factfollow(n)={local(fm, np, n2);
      fm=factor(n); np=matsize(fm)[1];
      if(np==0,return([2]));
      n2=n*nextprime(fm[np,1]+1);
      if(np==1||fm[np,2]Franklin T. Adams-Watters, Dec 01 2011 */
    
  • PARI
    is(n) = {if(n==1, return(1)); my(f = factor(n));  f[#f~, 1] == prime(#f~) && vecsort(f[, 2],,4) == f[, 2]} \\ David A. Corneth, Feb 14 2019
    
  • PARI
    upto(Nmax)=vecsort(concat(vector(logint(Nmax,2),n,select(t->t<=Nmax,if(n>1,[factorback(primes(#p),Vecrev(p)) || p<-partitions(n)],[1,2]))))) \\ M. F. Hasler, Jul 17 2019
    
  • PARI
    \\ For fast generation of large number of terms, use this program:
    A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980
    A025487list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t); while(lista[i] != u, if(2*lista[i] <= u, listput(lista,2*lista[i]); t = A283980(lista[i]); if(t <= u, listput(lista,t))); i++); vecsort(Vec(lista)); }; \\ Returns a list of terms up to the term 2^e.
    v025487 = A025487list(101);
    A025487(n) = v025487[n];
    for(n=1,#v025487,print1(A025487(n), ", ")); \\ Antti Karttunen, Dec 24 2019
    
  • Sage
    def sharp_primorial(n): return sloane.A002110(prime_pi(n))
    N = 2310
    nmax = 2^floor(log(N,2))
    sorted([j for j in (prod(sharp_primorial(t[0])^t[1] for k, t in enumerate(factor(n))) for n in (1..nmax)) if j <= N])
    # Giuseppe Coppoletta, Jan 26 2015

Formula

What can be said about the asymptotic behavior of this sequence? - Franklin T. Adams-Watters, Jan 06 2010
Hardy & Ramanujan prove that there are exp((2 Pi + o(1))/sqrt(3) * sqrt(log x/log log x)) members of this sequence up to x. - Charles R Greathouse IV, Dec 05 2012
From Antti Karttunen, Jan 18 & Dec 24 2019: (Start)
A085089(a(n)) = n.
A101296(a(n)) = n [which is the first occurrence of n in A101296, and thus also a record.]
A001221(a(n)) = A061395(a(n)) = A061394(n).
A007814(a(n)) = A051903(a(n)) = A051282(n).
a(A101296(n)) = A046523(n).
a(A306802(n)) = A002182(n).
a(n) = A108951(A181815(n)) = A329900(A181817(n)).
If A181815(n) is odd, a(n) = A283980(a(A329904(n))), otherwise a(n) = 2*a(A329904(n)).
(End)
Sum_{n>=1} 1/a(n) = Product_{n>=1} 1/(1 - 1/A002110(n)) = A161360. - Amiram Eldar, Oct 20 2020

Extensions

Offset corrected by Matthew Vandermast, Oct 19 2008
Minor correction by Charles R Greathouse IV, Sep 03 2010

A085089 Number of distinct prime signatures arising up to n.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jul 02 2003

Keywords

Crossrefs

Cf. A025487.
Cf. A025488(n) = a(2^n); A124832 (table of the distinct prime signatures in the order they occur).

Programs

  • PARI
    A085089(n)=#Set(apply(t->vecsort(factor(t)[,2]), [1..n])) \\ Not very efficient for large n > 10^5, but very quick up to the point where stack overflow occurs. - M. F. Hasler, Jul 16 2019

Extensions

More terms from Ray Chandler, Aug 17 2003

A366884 Number of branching factorizations of the least integer of each prime signature (A025487).

Original entry on oeis.org

0, 1, 2, 3, 5, 11, 15, 45, 19, 51, 62, 195, 113, 188, 345, 873, 645, 731, 1890, 911, 3989, 207, 2405, 3585, 2950, 10221, 6525, 18483, 1709, 15775, 19569, 12235, 54718, 43545, 86515, 12405, 99215, 9332, 105447, 51822, 55885, 290611, 17753, 120075, 277203, 408105, 83505, 605135, 80565, 562739, 223191, 432975, 1533670
Offset: 1

Views

Author

Antti Karttunen, Jan 02 2024

Keywords

Comments

Sequence appears to be injective, but can it be proved? This would prove also the conjectures given in A277120 and A366377.
Of the first 21001 terms, there are 701 terms ending with digit "0", 614 with "1", 68 with "2", 570 with "3", 0 with "4", 17795 with "5", 0 with "6", 550 with "7", 67 with "8", and 636 with "9". Why such an overrepresentation (~ 85% of the total) of the terms of form 10k+5? Do any terms of the form 10k+4 or 10k+6 exist? See also the comments in A052886.

Crossrefs

Formula

a(n) = A277120(A025487(n)).
a(n) = A366377(A181815(n)).
For all n >= 1, a(A025488(n)) = A007317(n), a(A098719(n)) = A052886(n).

A037088 Triangle read by rows: T(n,k) is number of numbers x, 2^n <= x < 2^(n+1), with k prime factors (counted with multiplicity).

Original entry on oeis.org

2, 2, 2, 2, 4, 2, 5, 4, 5, 2, 7, 12, 6, 5, 2, 13, 20, 17, 7, 5, 2, 23, 40, 30, 20, 8, 5, 2, 43, 75, 65, 37, 21, 8, 5, 2, 75, 147, 131, 81, 41, 22, 8, 5, 2, 137, 285, 257, 173, 91, 44, 22, 8, 5, 2, 255, 535, 536, 344, 199, 96, 46, 22, 8, 5, 2, 464, 1062, 1033, 736, 403, 215, 99, 47
Offset: 1

Views

Author

Keywords

Comments

Sequence A092097 gives the limiting behavior at the end of the rows. - T. D. Noe, Feb 22 2008

Examples

			The triangular array begins 2; 2,2; 2,4,2; 5,4,5,2; 7,12,6,5,2; ...
a(7) = 5 because the 3-almost primes between 16 and 32 are (18,20,27,28,30).
		

Crossrefs

A001222 counts factors of n. A000040, A001358, A014612-A014614 are special cases. A036378 and A025488 are applications of binary order A029837. Leading diagonal is essentially A036378 and has partial sums A007053.

Programs

  • Mathematica
    t[n_, k_] := Count[Range[2^n, 2^(n+1)-1], x_ /; Total[FactorInteger[x][[All, 2]]] == k]; Table[t[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 07 2013 *)

Extensions

More terms from Naohiro Nomoto, Jun 18 2001

A369137 Inverse permutation to A369136.

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 11, 7, 8, 9, 51, 10, 28, 14, 12, 15, 1602, 13, 194, 16, 18, 60, 307, 17, 23, 35, 20, 21, 681, 19
Offset: 1

Views

Author

Pontus von Brömssen, Jan 14 2024

Keywords

Comments

A284456(a(n)) is the smallest number whose prime tower factorization tree has Matula-Göbel number n.
After a(31), the sequence continues 25, 71, 1726, 31, 22, 1304, 221, 44, 24, ?, 26, ?, 79, 27, 343, ?, 29, 47, 33, 1867, 50, ?, 32, 98, 34, 250, 739, ?, 30, ?, ?, 37, 42, 66, 91, ?, 1935, 381, 41, ... .

Crossrefs

Formula

A369015(A284456(a(n))) = A369136(a(n)) = n.
A369099(n) = A284456(a(n)).
A369138(a(A007097(n))) = A025488(A014221(n-1)).
A369138(a(2^n)) = A098719(n+1).

A369138 Index of A284456(n) in A025487.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 9, 11, 12, 13, 14, 19, 20, 21, 22, 24, 29, 33, 34, 38, 39, 43, 44, 47, 54, 57, 61, 63, 66, 67, 68, 72, 73, 74, 88, 93, 94, 101, 102, 107, 108, 114, 118, 121, 128, 129, 131, 138, 140, 142, 145, 147, 149, 161, 172, 185, 186, 187, 188, 192, 198
Offset: 1

Views

Author

Pontus von Brömssen, Jan 14 2024

Keywords

Crossrefs

Formula

a(n) = A085089(A284456(n)).
A025487(a(n)) = A284456(n).
a(A369137(A007097(n))) = A025488(A014221(n-1)).
a(A369137(2^n)) = A098719(n+1).

A341351 a(n) = A048673(A181815(n)).

Original entry on oeis.org

1, 2, 5, 3, 14, 8, 41, 23, 4, 122, 13, 68, 11, 365, 38, 203, 32, 1094, 113, 18, 608, 6, 63, 95, 3281, 338, 53, 1823, 17, 188, 284, 9842, 1013, 158, 5468, 50, 563, 25, 851, 29525, 88, 3038, 28, 313, 473, 16403, 149, 1688, 74, 2552, 88574, 263, 9113, 7, 83, 938, 1418, 49208, 446, 5063, 221, 7655, 265721, 788, 27338, 20
Offset: 1

Views

Author

Keywords

Comments

Maxima are in A007051 and appear at n in A025488, which are the indices of 2^k in A025487. 2^k is idempotent via A181815 but transformed by A003961 to 3^n, which are rendered by A048673 to (3^n + 1)/2.
Local minima are in A111333 and appear at n in A098719, which are the indices of P(k) = A002110(k) in A025487. P(k) is transformed by A181815 to p_k = A000040(k), which become p_(k+1) under A003961. Therefore these become (p_(k+1)+1)/2 via A048673.

Crossrefs

Cf. A341352 (inverse).
Cf. A007051 (record values).

Programs

  • Mathematica
    a025487[n_] := {{1}}~Join~Block[{lim = Product[Prime@ i, {i, n}], ww = NestList[Append[#, 1] &, {1}, n - 1]}, Map[Block[{w = #, k = 1}, Sort@ Prepend[If[Length@ # == 0, #, #[[1]]], Product[Prime@ i, {i, Length@ w}]] &@ Reap[Do[If[# < lim, Sow[#]; k = 1, If[k >= Length@ w, Break[], k++]] &@ Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, #]] &@ Set[w, If[k == 1, MapAt[# + 1 &, w, k], PadLeft[#, Length@ w, First@ #] &@ Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1]]], {i, Infinity}]][[-1]] ] &, ww]]; Map[(1 + If[# == 1, 1, Apply[Times, NextPrime[#1]^#2 & @@@ FactorInteger[#]]])/2 &@ Apply[Times, Prime@ Table[LengthWhile[#1, # >= j &], {j, #2}] & @@ {#, Max[#]} &@ If[# == 1, {0}, Function[f, ReplacePart[ConstantArray[0, PrimePi@ f[[-1, 1]] ], #] &@ Map[PrimePi@ First@ # -> Last@ # &, f]]@ FactorInteger@ #]] &, Union@ Flatten@ a025487@ 5] (* Michael De Vlieger, Feb 11 2021 *)
  • PARI
    A341351(n) = A048673(A181815(n));

Formula

a(n) = A048673(A181815(n)).
For all n >= 1, A181812(a(n)) = A025487(n).

A361809 Fixed points of A181820 and A361808.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 15, 46, 58, 817, 5494, 8502
Offset: 1

Views

Author

Pontus von Brömssen, Mar 25 2023

Keywords

Comments

Numbers k such that the partition with Heinz number k is identical to the partition given by the prime signature of A025487(k).
There are no more terms below 10177058 = A025488(143).

Examples

			4 is a term because the partition with Heinz number 4 = 2^2 = prime(1)^2 is (1,1), which is identical to the partition given by the prime signature of A025487(4) = 6 = 2^1*3^1.
15 is a term because the partition with Heinz number 15 = 3*5 = prime(2)*prime(3) is (2,3), which is identical to the partition given by the prime signature of A025487(15) = 72 = 2^3*3^2.
8502 is a term because the partition with Heinz number 8502 = 2*3*13*109 = prime(1)*prime(2)*prime(6)*prime(29) is (1,2,6,29), which is identical to the partition given by the prime signature of A025487(8502) = 68491306598400 = 2^29*3^6*5^2*7.
		

Crossrefs

Formula

A181820(a(n)) = A361808(a(n)) = a(n).
Showing 1-9 of 9 results.