A061398 Number of squarefree integers between prime(n) and prime(n+1).
0, 0, 1, 1, 0, 2, 0, 2, 1, 1, 3, 2, 1, 1, 1, 3, 0, 3, 2, 0, 3, 1, 3, 4, 0, 1, 2, 0, 2, 6, 2, 2, 1, 5, 0, 2, 3, 2, 1, 3, 0, 6, 0, 2, 0, 7, 8, 1, 0, 2, 3, 0, 3, 3, 3, 3, 0, 2, 1, 1, 5, 7, 2, 0, 1, 9, 2, 4, 0, 0, 4, 3, 2, 2, 2, 2, 5, 2, 4, 6, 0, 5, 0, 4, 1, 3, 4, 1, 1, 2, 6, 4, 1, 4, 2, 2, 7, 0, 8, 4, 4, 3, 2, 1, 2
Offset: 1
Keywords
Examples
Between 113 and 127 the 6 squarefree numbers are 114, 115, 118, 119, 122, 123, so a(30)=6. From _Gus Wiseman_, Nov 06 2024: (Start) The a(n) squarefree numbers for n = 1..16: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 --------------------------------------------------------------- . . 6 10 . 14 . 21 26 30 33 38 42 46 51 55 15 22 34 39 57 35 58 (End)
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A179211. [Reinhard Zumkeller, Jul 05 2010]
Counting all composite numbers (not just squarefree) gives A046933.
The version for nonsquarefree numbers is A061399.
Zeros are A068360.
The version for prime-powers is A080101.
Partial sums are A337030.
The version for non-prime-powers is A368748.
Excluding prime(n+1) from the range gives A373198.
Ones are A377430.
Positives are A377431.
The version for perfect-powers is A377432.
The version for non-perfect-powers is A377433 + 2.
For squarefree numbers (A005117) between primes:
- length is A061398 (this sequence)
- min is A112926
- max is A112925
- sum is A373197
For squarefree numbers between powers of two:
- sum is A373123
For primes between powers of two:
- length is A036378
- sum is A293697 (except initial terms)
Programs
-
Maple
p:= 2: for n from 1 to 200 do q:= nextprime(p); A[n]:= nops(select(numtheory:-issqrfree, [$p+1..q-1])); p:= q; od: seq(A[i],i=1..200); # Robert Israel, Jan 06 2017
-
Mathematica
a[n_] := Count[Range[Prime[n]+1, Prime[n+1]-1], _?SquareFreeQ]; Array[a, 100] (* Jean-François Alcover, Feb 28 2019 *) Count[Range[#[[1]]+1,#[[2]]-1],?(SquareFreeQ[#]&)]&/@Partition[ Prime[ Range[120]],2,1] (* _Harvey P. Dale, Oct 14 2021 *)
-
PARI
{ n=0; q=2; forprime (p=3, prime(1001), a=0; for (i=q+1, p-1, a+=issquarefree(i)); write("b061398.txt", n++, " ", a); q=p ) } \\ Harry J. Smith, Jul 22 2009
-
PARI
a(n) = my(pp=prime(n)+1); sum(k=pp, nextprime(pp)-1, issquarefree(k)); \\ Michel Marcus, Feb 28 2019
-
Python
from math import isqrt from sympy import mobius, prime, nextprime def A061398(n): p = prime(n) q = nextprime(p) r = isqrt(p-1)+1 return sum(mobius(k)*((q-1)//k**2) for k in range(r,isqrt(q-1)+1))+sum(mobius(k)*((q-1)//k**2-(p-1)//k**2) for k in range(1,r))-1 # Chai Wah Wu, Jun 01 2024
Formula
a(n) = A373198(n) - 1. - Gus Wiseman, Nov 06 2024