A061427 Geometric mean of the digits = 3. In other words, the product of the digits is = 3^k where k is the number of digits.
3, 19, 33, 91, 139, 193, 319, 333, 391, 913, 931, 1199, 1339, 1393, 1919, 1933, 1991, 3139, 3193, 3319, 3333, 3391, 3913, 3931, 9119, 9133, 9191, 9313, 9331, 9911, 11399, 11939, 11993, 13199, 13339, 13393, 13919, 13933, 13991, 19139, 19193
Offset: 1
Examples
319 is a term as the geometric mean of digits is (3*1*9) = 27 = 3^3.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a061427 n = a061427_list !! (n-1) a061427_list = g [1] where g ds = if product ds == 3 ^ length ds then foldr (\d v -> 10 * v + d) 0 ds : g (s ds) else g (s ds) s [] = [1]; s (9:ds) = 1 : s ds; s (d:ds) = 3*d : ds -- Reinhard Zumkeller, Jan 13 2014
-
Mathematica
Select[Range[20000],GeometricMean[IntegerDigits[#]]==3&] (* Harvey P. Dale, Dec 11 2011 *)
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), May 16 2001