A174813 a(n) = number whose product of digits equals a power of 3.
1, 3, 9, 11, 13, 19, 31, 33, 39, 91, 93, 99, 111, 113, 119, 131, 133, 139, 191, 193, 199, 311, 313, 319, 331, 333, 339, 391, 393, 399, 911, 913, 919, 931, 933, 939, 991, 993, 999, 1111, 1113, 1119, 1131, 1133, 1139, 1191, 1193, 1199, 1311, 1313, 1319, 1331
Offset: 1
Examples
a(9)=39 is in the sequence because 3*9=3^3.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a174813 n = a174813_list !! (n-1) a174813_list = f [1] where f ds = foldr (\d v -> 10 * v + d) 0 ds : f (s ds) s [] = [1]; s (9:ds) = 1 : s ds; s (d:ds) = 3*d : ds -- Reinhard Zumkeller, Jan 13 2014
-
Mathematica
Select[Range[2000], IntegerQ[Log[3, Times @@ (IntegerDigits[#])]] &]
-
Python
from sympy import integer_log def A174813(n): m = integer_log(k:=(n<<1)+1,3)[0] return sum(3**((k-3**m)//(3**j<<1)%3)*10**j for j in range(m)) # Chai Wah Wu, Jun 28 2025
Comments