cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A174813 a(n) = number whose product of digits equals a power of 3.

Original entry on oeis.org

1, 3, 9, 11, 13, 19, 31, 33, 39, 91, 93, 99, 111, 113, 119, 131, 133, 139, 191, 193, 199, 311, 313, 319, 331, 333, 339, 391, 393, 399, 911, 913, 919, 931, 933, 939, 991, 993, 999, 1111, 1113, 1119, 1131, 1133, 1139, 1191, 1193, 1199, 1311, 1313, 1319, 1331
Offset: 1

Views

Author

Michel Lagneau, Dec 01 2010

Keywords

Comments

Equivalently, numbers whose decimal representation consists of digits from the set {1,3,9}.

Examples

			a(9)=39 is in the sequence because 3*9=3^3.
		

Crossrefs

Programs

  • Haskell
    a174813 n = a174813_list !! (n-1)
    a174813_list = f [1] where
       f ds = foldr (\d v -> 10 * v + d) 0 ds : f (s ds)
       s [] = [1]; s (9:ds) = 1 : s ds; s (d:ds) = 3*d : ds
    -- Reinhard Zumkeller, Jan 13 2014
    
  • Mathematica
    Select[Range[2000], IntegerQ[Log[3, Times @@ (IntegerDigits[#])]] &]
  • Python
    from sympy import integer_log
    def A174813(n):
        m = integer_log(k:=(n<<1)+1,3)[0]
        return sum(3**((k-3**m)//(3**j<<1)%3)*10**j for j in range(m)) # Chai Wah Wu, Jun 28 2025

A061426 Geometric mean of the digits = 2. In other words, the product of the digits is = 2^k where k is the number of digits.

Original entry on oeis.org

2, 14, 22, 41, 118, 124, 142, 181, 214, 222, 241, 412, 421, 811, 1128, 1144, 1182, 1218, 1224, 1242, 1281, 1414, 1422, 1441, 1812, 1821, 2118, 2124, 2142, 2181, 2214, 2222, 2241, 2412, 2421, 2811, 4114, 4122, 4141, 4212, 4221, 4411, 8112, 8121, 8211
Offset: 1

Views

Author

Amarnath Murthy, May 03 2001

Keywords

Examples

			124 is a term as the geometric mean of digits is (1*2*4) = 8 = 2^3.
		

Crossrefs

Cf. A061427-A061430. A069512 gives another version.
Cf. A028846.

Programs

  • Haskell
    a061426 n = a061426_list !! (n-1)
    a061426_list = g [1] where
       g ds = if product ds == 2 ^ length ds
              then foldr (\d v -> 10 * v + d) 0 ds : g (s ds) else g (s ds)
       s [] = [1]; s (8:ds) = 1 : s ds; s (d:ds) = 2*d : ds
    -- Reinhard Zumkeller, Jan 13 2014

Extensions

More terms from Erich Friedman, May 08 2001

A061430 Geometric mean of the digits is an integer: k-digit numbers such that the product of the digits is a number of the form m^k.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 19, 20, 22, 28, 30, 33, 40, 41, 44, 49, 50, 55, 60, 66, 70, 77, 80, 82, 88, 90, 91, 94, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 118, 120, 124, 130, 139, 140, 142, 150, 160, 170, 180, 181, 188, 190, 193
Offset: 1

Views

Author

Amarnath Murthy, May 03 2001

Keywords

Examples

			694 is a term as (6*9*4)^(1/3) = 6 is an integer.
		

Crossrefs

Programs

  • Haskell
    a061430 n = a061430_list !! (n-1)
    a061430_list = filter g [0..] where
       g u = round (fromIntegral p ** (1 / fromIntegral k)) ^ k == p where
             (p, k) = h (1, 0) u
             h (p, l) 0 = (p, l)
             h (p, l) v = h (p * r, l + 1) v' where (v', r) = divMod v 10
    -- Reinhard Zumkeller, Jan 13 2014
  • Mathematica
    Select[Range[0,200],IntegerQ[GeometricMean[IntegerDigits[#]]]&] (* Harvey P. Dale, Feb 15 2012 *)

Extensions

More terms from Naohiro Nomoto, May 11 2001

A061428 Geometric mean of the digits = 4. In other words, the product of the digits is = 4^k where k is the number of digits.

Original entry on oeis.org

4, 28, 44, 82, 188, 248, 284, 428, 444, 482, 818, 824, 842, 881, 1488, 1848, 1884, 2288, 2448, 2484, 2828, 2844, 2882, 4188, 4248, 4284, 4428, 4444, 4482, 4818, 4824, 4842, 4881, 8148, 8184, 8228, 8244, 8282, 8418, 8424, 8442, 8481, 8814, 8822, 8841, 12888
Offset: 1

Views

Author

Amarnath Murthy, May 03 2001

Keywords

Examples

			248 is a term as the geometric mean of digits is (2*4*8) = 64 = 4^3.
		

Crossrefs

Programs

  • Haskell
    a061428 n = a061428_list !! (n-1)
    a061428_list = g [1] where
       g ds = if product ds == 4 ^ length ds
              then foldr (\d v -> 10 * v + d) 0 ds : g (s ds) else g (s ds)
       s [] = [1]; s (8:ds) = 1 : s ds; s (d:ds) = 2*d : ds
    -- Reinhard Zumkeller, Jan 13 2014
    
  • Python
    from math import prod
    from sympy.utilities.iterables import multiset_combinations, multiset_permutations
    def auptod(maxdigits):
      n, digs, alst, powsexps2 = 0, 1, [], [(1, 0), (2, 1), (4, 2), (8, 3)]
      for digs in range(1, maxdigits+1):
        target, okdigs = 4**digs, set()
        mcstr = "".join(str(d)*(digs//max(1, r//2)) for d, r in powsexps2)
        for mc in multiset_combinations(mcstr, digs):
          if prod(map(int, mc)) == target:
            n += 1
            okdigs |= set("".join(mp) for mp in multiset_permutations(mc, digs))
        alst += sorted(map(int, okdigs))
      return alst
    print(auptod(4)) # Michael S. Branicky, Apr 28 2021

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 16 2001

A069516 Geometric mean of digits = 3 and digits are in nondecreasing order.

Original entry on oeis.org

3, 19, 33, 139, 333, 1199, 1339, 3333, 11399, 13339, 33333, 111999, 113399, 133339, 333333, 1113999, 1133399, 1333339, 3333333, 11119999, 11133999, 11333399, 13333339, 33333333, 111139999, 111333999, 113333399, 133333339, 333333333, 1111199999, 1111339999
Offset: 1

Views

Author

Amarnath Murthy, Mar 30 2002

Keywords

Comments

No number is obtainable by permuting the digits of other members - only one with ascending order of digits is included.

Examples

			1339 belongs to this sequence but 1933 does not.
		

Crossrefs

Programs

  • Mathematica
    a = {}; b = 3; Do[c = Apply[ Times, IntegerDigits[n]]/b^Floor[ Log[10, n] + 1]; If[c == 1 && Position[a, FromDigits[ Sort[ IntegerDigits[n]]]] == {}, Print[n]; a = Append[a, n]], {n, 1, 10^8}]
  • Python
    from math import prod
    from sympy.utilities.iterables import multiset_combinations
    def aupton(terms):
      n, digits, alst, powsexps3 = 0, 1, [], [(1, 0), (3, 1), (9, 2)]
      while n < terms:
        target = 3**digits
        mcstr = "".join(str(d)*(digits//max(1, r)) for d, r in powsexps3)
        for mc in multiset_combinations(mcstr, digits):
          if prod(map(int, mc)) == target:
            n += 1
            alst.append(int("".join(mc)))
            if n == terms: break
        else: digits += 1
      return alst
    print(aupton(31)) # Michael S. Branicky, Apr 28 2021

Extensions

Edited and extended by Robert G. Wilson v, Apr 01 2002
Name edited and a(30) and beyond from Michael S. Branicky, Apr 28 2021

A285094 Corresponding values of geometric means of digits of numbers from A061430.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 0, 2, 4, 0, 3, 0, 2, 4, 6, 0, 5, 0, 6, 0, 7, 0, 4, 8, 0, 3, 6, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 2, 0, 3, 0, 2, 0, 0, 0, 0, 2, 4, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 2, 4, 0, 0, 0, 0, 4, 0
Offset: 0

Views

Author

Jaroslav Krizek, Apr 14 2017

Keywords

Crossrefs

Cf. A061430 (numbers with integer geometric mean of digits in base 10).
Sequences of numbers n such that a(n) = k for k = 0 - 9: A011540 (k = 0), A002275 (k = 1), A061426 (k = 2), A061427 (k = 3), A061428 (k = 4), A002279 (k = 5), A061429 (k = 6), A002281 (k = 7), A002282 (k = 8), A002283 (k = 9).

Programs

  • Magma
    [0] cat [Floor(&*Intseq(n) ^ (1/#Intseq(n))): n in [1..100000] | IsIntegral(&*Intseq(n) ^ (1/#Intseq(n)))];
Showing 1-6 of 6 results.