cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A061430 Geometric mean of the digits is an integer: k-digit numbers such that the product of the digits is a number of the form m^k.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 19, 20, 22, 28, 30, 33, 40, 41, 44, 49, 50, 55, 60, 66, 70, 77, 80, 82, 88, 90, 91, 94, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 118, 120, 124, 130, 139, 140, 142, 150, 160, 170, 180, 181, 188, 190, 193
Offset: 1

Views

Author

Amarnath Murthy, May 03 2001

Keywords

Examples

			694 is a term as (6*9*4)^(1/3) = 6 is an integer.
		

Crossrefs

Programs

  • Haskell
    a061430 n = a061430_list !! (n-1)
    a061430_list = filter g [0..] where
       g u = round (fromIntegral p ** (1 / fromIntegral k)) ^ k == p where
             (p, k) = h (1, 0) u
             h (p, l) 0 = (p, l)
             h (p, l) v = h (p * r, l + 1) v' where (v', r) = divMod v 10
    -- Reinhard Zumkeller, Jan 13 2014
  • Mathematica
    Select[Range[0,200],IntegerQ[GeometricMean[IntegerDigits[#]]]&] (* Harvey P. Dale, Feb 15 2012 *)

Extensions

More terms from Naohiro Nomoto, May 11 2001

A069518 Geometric mean of digits = 4 and digits are in nondecreasing order.

Original entry on oeis.org

4, 28, 44, 188, 248, 444, 1488, 2288, 2448, 4444, 12888, 14488, 22488, 24448, 44444, 118888, 124888, 144488, 222888, 224488, 244448, 444444, 1148888, 1228888, 1244888, 1444488, 2224888, 2244488, 2444448, 4444444, 11288888, 11448888, 12248888, 12444888
Offset: 1

Views

Author

Amarnath Murthy, Mar 30 2002

Keywords

Comments

No number is obtainable by permuting the digits of other members - only one with ascending order of digits is included.

Examples

			1488 is a term but 1848 is not.
		

Crossrefs

Programs

  • Mathematica
    a = {}; b = 4; Do[c = Apply[ Times, IntegerDigits[n]]/b^Floor[ Log[10, n] + 1]; If[c == 1 && Position[a, FromDigits[ Sort[ IntegerDigits[n]]]] == {}, Print[n]; a = Append[a, n]], {n, 1, 10^7}]
  • Python
    from math import prod
    from sympy.utilities.iterables import multiset_combinations
    def auptod(terms):
      n, digits, alst, powsexps2 = 0, 1, [], [(1, 0), (2, 1), (4, 2), (8, 3)]
      while n < terms:
        target = 4**digits
        mcstr = "".join(str(d)*(digits//max(1, r//2)) for d, r in powsexps2)
        for mc in multiset_combinations(mcstr, digits):
          if prod(map(int, mc)) == target:
            n += 1
            alst.append(int("".join(mc)))
            if n == terms: break
        else: digits += 1
      return alst
    print(auptod(34)) # Michael S. Branicky, Apr 28 2021

Extensions

Edited and extended by Robert G. Wilson v, Apr 01 2002
Name edited and a(31) and beyond from Michael S. Branicky, Apr 28 2021

A285094 Corresponding values of geometric means of digits of numbers from A061430.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 0, 2, 4, 0, 3, 0, 2, 4, 6, 0, 5, 0, 6, 0, 7, 0, 4, 8, 0, 3, 6, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 2, 0, 3, 0, 2, 0, 0, 0, 0, 2, 4, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 2, 4, 0, 0, 0, 0, 4, 0
Offset: 0

Views

Author

Jaroslav Krizek, Apr 14 2017

Keywords

Crossrefs

Cf. A061430 (numbers with integer geometric mean of digits in base 10).
Sequences of numbers n such that a(n) = k for k = 0 - 9: A011540 (k = 0), A002275 (k = 1), A061426 (k = 2), A061427 (k = 3), A061428 (k = 4), A002279 (k = 5), A061429 (k = 6), A002281 (k = 7), A002282 (k = 8), A002283 (k = 9).

Programs

  • Magma
    [0] cat [Floor(&*Intseq(n) ^ (1/#Intseq(n))): n in [1..100000] | IsIntegral(&*Intseq(n) ^ (1/#Intseq(n)))];
Showing 1-3 of 3 results.