cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A028846 Numbers whose product of digits is a power of 2.

Original entry on oeis.org

1, 2, 4, 8, 11, 12, 14, 18, 21, 22, 24, 28, 41, 42, 44, 48, 81, 82, 84, 88, 111, 112, 114, 118, 121, 122, 124, 128, 141, 142, 144, 148, 181, 182, 184, 188, 211, 212, 214, 218, 221, 222, 224, 228, 241, 242, 244, 248, 281, 282, 284, 288, 411, 412, 414, 418, 421, 422, 424, 428, 441, 442, 444, 448
Offset: 1

Views

Author

Keywords

Comments

Numbers using only digits 1, 2, 4, and 8. - Michel Lagneau, Dec 01 2010

Examples

			28 is in the sequence because 2*8 = 2^4. - _Michel Lagneau_, Dec 01 2010
		

Crossrefs

Programs

  • Haskell
    a028846 n = a028846_list !! (n-1)
    a028846_list = f [1] where
       f ds = foldr (\d v -> 10 * v + d) 0 ds : f (s ds)
       s [] = [1]; s (8:ds) = 1 : s ds; s (d:ds) = 2*d : ds
    -- Reinhard Zumkeller, Jan 13 2014
    
  • Mathematica
    Select[Range[1000], IntegerQ[Log[2, Times @@ (IntegerDigits[#])]] &] (* Michel Lagneau, Dec 01 2010 *)
  • PARI
    is(n)=#setminus(Set(digits(n)), [1,2,4,8])==0 \\ Charles R Greathouse IV, Apr 24 2025
  • Python
    from itertools import count, islice, product
    def agen(): yield from (int("".join(p)) for d in count(1) for p in product("1248", repeat=d))
    print(list(islice(agen(), 64))) # Michael S. Branicky, Aug 21 2022
    
  • Python
    def A028846(n):
        m = (k:=3*n+1).bit_length()-1>>1
        return sum(10**j<<((k-(1<<(m<<1)))//(3<<(j<<1))&3) for j in range(m)) # Chai Wah Wu, Jun 28 2025
    

Formula

Given a(0) = 0 and n = 4k - r, where 0 <= r <= 3, a(n) = 10*a(k-1) + 2^(3-r). - Clinton H. Dan, Aug 21 2022

Extensions

More terms from Scott Lindhurst (ScottL(AT)alumni.princeton.edu)

A276037 Numbers using only digits 1 and 5.

Original entry on oeis.org

1, 5, 11, 15, 51, 55, 111, 115, 151, 155, 511, 515, 551, 555, 1111, 1115, 1151, 1155, 1511, 1515, 1551, 1555, 5111, 5115, 5151, 5155, 5511, 5515, 5551, 5555, 11111, 11115, 11151, 11155, 11511, 11515, 11551, 11555, 15111, 15115, 15151, 15155, 15511, 15515
Offset: 1

Views

Author

Vincenzo Librandi, Aug 17 2016

Keywords

Comments

Numbers n such that product of digits of n is a power of 5.

Examples

			5551 is in the sequence because all of its digits are 1 or 5 and consequently because the product of digits, 5*5*5*1 = 125 = 5^3 is a power of 5.
		

Crossrefs

Cf. numbers n such that product of digits of n is a power of k: A028846 (k=2), A174813 (k=3), this sequence (k=5), A276038 (k=6), A276039 (k=7).
Cf. A199985 (a subsequence).

Programs

  • Magma
    [n: n in [1..20000] | Set(Intseq(n)) subset {1, 5}]; // Vincenzo Librandi, Aug 19 2016
    
  • Maple
    S[0]:= [0]:
    for d from 1 to 6 do S[d]:= map(t -> (10*t+1, 10*t+5), S[d-1]) od:
    seq(op(S[d]),d=1..6); # Robert Israel, Aug 22 2016
  • Mathematica
    Select[Range[20000], IntegerQ[Log[5, Times@@(IntegerDigits[#])]]&]
  • PARI
    a(n) = my(v=[1,5], b=binary(n+1), d=vector(#b-1,i, v[b[i+1]+1])); sum(i=1, #d, d[i] * 10^(#d-i)) \\ David A. Corneth, Aug 22 2016
  • Python
    from itertools import product
    A276037_list = [int(''.join(d)) for l in range(1,10) for d in product('15',repeat=l)] # Chai Wah Wu, Aug 18 2016
    
  • Python
    def A276037(n): return (int(bin(n+1)[3:])<<2)+(10**((n+1).bit_length()-1)-1)//9 # Chai Wah Wu, Jun 28 2025
    

Formula

From Robert Israel, Aug 22 2016: (Start)
a(2n+1) = 10 a(n) + 1.
a(2n+2) = 10 a(n) + 5.
G.f. g(x) satisfies g(x) = 10 (x + x^2) g(x^2) + (x + 5 x^2)/(1 - x^2). (End)

Extensions

Example changed by David A. Corneth, Aug 22 2016

A329761 Primes having only {1, 3, 9} as digits.

Original entry on oeis.org

3, 11, 13, 19, 31, 113, 131, 139, 191, 193, 199, 311, 313, 331, 911, 919, 991, 1193, 1319, 1399, 1913, 1931, 1933, 1993, 1999, 3119, 3191, 3313, 3319, 3331, 3391, 3911, 3919, 3931, 9133, 9199, 9311, 9319, 9391, 9931, 11113, 11119, 11131, 11311, 11393, 11399
Offset: 1

Views

Author

Alois P. Heinz, Nov 20 2019

Keywords

Comments

Original name was: Primes whose product of decimal digits is a power of 3.
Primes whose digit set is a subset of {1,3,9}.

Crossrefs

Subsequence of A030096.

Programs

  • Magma
    [p: p in PrimesUpTo(12000) | Set(Intseq(p)) subset [1,3,9]]; // Vincenzo Librandi, Jan 02 2019
  • Mathematica
    Select[Prime[Range[1500]],IntegerQ[Log[3,Times@@IntegerDigits[#]]]&] (* or *) Table[Select[FromDigits/@Tuples[{1,3,9},n],PrimeQ],{n,5}]// Flatten (* Harvey P. Dale, Dec 31 2019 *)

Formula

{ A000040 } intersect { A174813 }.
a(n) in { A000040 } and A007954(a(n)) in { A000244 }.

Extensions

Name changed by Sean A. Irvine, Jul 20 2025

A061427 Geometric mean of the digits = 3. In other words, the product of the digits is = 3^k where k is the number of digits.

Original entry on oeis.org

3, 19, 33, 91, 139, 193, 319, 333, 391, 913, 931, 1199, 1339, 1393, 1919, 1933, 1991, 3139, 3193, 3319, 3333, 3391, 3913, 3931, 9119, 9133, 9191, 9313, 9331, 9911, 11399, 11939, 11993, 13199, 13339, 13393, 13919, 13933, 13991, 19139, 19193
Offset: 1

Views

Author

Amarnath Murthy, May 03 2001

Keywords

Examples

			319 is a term as the geometric mean of digits is (3*1*9) = 27 = 3^3.
		

Crossrefs

Programs

  • Haskell
    a061427 n = a061427_list !! (n-1)
    a061427_list = g [1] where
       g ds = if product ds == 3 ^ length ds
              then foldr (\d v -> 10 * v + d) 0 ds : g (s ds) else g (s ds)
       s [] = [1]; s (9:ds) = 1 : s ds; s (d:ds) = 3*d : ds
    -- Reinhard Zumkeller, Jan 13 2014
  • Mathematica
    Select[Range[20000],GeometricMean[IntegerDigits[#]]==3&] (* Harvey P. Dale, Dec 11 2011 *)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 16 2001

A284295 Numbers n such that product of digits of n is a power of 9.

Original entry on oeis.org

1, 9, 11, 19, 33, 91, 99, 111, 119, 133, 191, 199, 313, 331, 339, 393, 911, 919, 933, 991, 999, 1111, 1119, 1133, 1191, 1199, 1313, 1331, 1339, 1393, 1911, 1919, 1933, 1991, 1999, 3113, 3131, 3139, 3193, 3311, 3319, 3333, 3391, 3399, 3913, 3931, 3939, 3993
Offset: 1

Views

Author

Jaroslav Krizek, Mar 25 2017

Keywords

Comments

Supersequence of A284294.

Examples

			1111 is in the sequence because 1*1*1*1 = 1 = 9^0.
		

Crossrefs

Cf. Numbers n such that product of digits of n is a power of k for k = 0 - 9: A284375 (k = 0), A002275 (k = 1), A028846 (k = 2), A174813 (k = 3), A284323 (k = 4), A276037 (k = 5), A276038 (k = 6), A276039 (k = 7), A284324 (k = 8), this sequence (k = 9).

Programs

  • Magma
    Set(Sort([n: n in [1..10000], k in [0..20] | &*Intseq(n) eq 9^k]))
  • Mathematica
    FromDigits /@ Select[Join @@ Map[Tuples[{1, 3, 9}, #] &, Range@ 4], IntegerQ@ Log[9, Times @@ #] &] (* Michael De Vlieger, Mar 25 2017 *)

A284324 Numbers k such that product of digits of k is a power of 8.

Original entry on oeis.org

1, 8, 11, 18, 24, 42, 81, 88, 111, 118, 124, 142, 181, 188, 214, 222, 241, 248, 284, 412, 421, 428, 444, 482, 811, 818, 824, 842, 881, 888, 1111, 1118, 1124, 1142, 1181, 1188, 1214, 1222, 1241, 1248, 1284, 1412, 1421, 1428, 1444, 1482, 1811, 1818, 1824, 1842
Offset: 1

Views

Author

Jaroslav Krizek, Mar 26 2017

Keywords

Comments

There are (2 + 4^d)/3 terms with d digits, for each d >= 1. - Robert Israel, Mar 31 2017

Examples

			1111 is in the sequence because 1*1*1*1 = 1 = 8^0.
		

Crossrefs

Supersequence of A213084.
Cf. Numbers n such that product of digits of n is a power of k for k = 0 - 9: A284375 (k = 0), A002275 (k = 1), A028846 (k = 2), A174813 (k = 3), A284323 (k = 4), A276037 (k = 5), A276038 (k = 6), A276039 (k = 7), this sequence (k = 8), A284295 (k = 9).

Programs

  • Magma
    Set(Sort([n: n in [1..10000], k in [0..20] | &*Intseq(n) eq 8^k]));
  • Maple
    dmax:= 4: # to get all terms with at most dmax digits
    B[0,1]:= {1,8}:
    B[1,1]:= {2}:
    B[2,1]:= {4}:
    for d from 2 to dmax do
      for j from 0 to 2 do
        B[j,d]:= map(t -> (10*t+1,10*t+8), B[j,d-1])
            union map(t -> 10*t+4, B[(j+1) mod 3, d-1])
            union map(t->10*t+2, B[(j+2) mod 3, d-1])
    od od:
    seq(op(sort(convert(B[0,d],list))),d=1..dmax); # Robert Israel, Mar 31 2017

A284375 Numbers whose product of digits is a power of 0.

Original entry on oeis.org

0, 1, 10, 11, 20, 30, 40, 50, 60, 70, 80, 90, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 120, 130, 140, 150, 160, 170, 180, 190, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 301, 302, 303
Offset: 1

Views

Author

Jaroslav Krizek, Mar 26 2017

Keywords

Examples

			111 is in the sequence because 1*1*1 = 1 = 0^0.
		

Crossrefs

Union of A011540 and A002275. Supersequence of A007088.
Cf. Numbers n such that product of digits of n is a power of k for k = 0 - 9: this sequence (k = 0), A002275 (k = 1), A028846 (k = 2), A174813 (k = 3), A284323 (k = 4), A276037 (k = 5), A276038 (k = 6), A276039 (k = 7), A284324 (k = 8), A284295 (k = 9), A328560 (k = 10).

Programs

  • Magma
    Set(Sort([n: n in [1..10000], k in [0..20] | &*Intseq(n) eq 0^k]));
  • Mathematica
    Select[Range[0, 500], Times@@ IntegerDigits[#] <2 &] (* Indranil Ghosh, Mar 26 2017 *)

A284323 Numbers k such that product of digits of k is a power of 4.

Original entry on oeis.org

1, 4, 11, 14, 22, 28, 41, 44, 82, 88, 111, 114, 122, 128, 141, 144, 182, 188, 212, 218, 221, 224, 242, 248, 281, 284, 411, 414, 422, 428, 441, 444, 482, 488, 812, 818, 821, 824, 842, 848, 881, 884, 1111, 1114, 1122, 1128, 1141, 1144, 1182, 1188, 1212, 1218
Offset: 0

Views

Author

Jaroslav Krizek, Mar 25 2017

Keywords

Examples

			1111 is in the sequence because 1*1*1*1 = 1 = 4^0.
		

Crossrefs

Supersequence of A032822.
Cf. Numbers n such that product of digits of n is a power of k for k = 0 - 9: A284375 (k = 0), A002275 (k = 1), A028846 (k = 2), A174813 (k = 3), this sequence (k = 4), A276037 (k = 5), A276038 (k = 6), A276039 (k = 7), A284324 (k = 8), A284295 (k = 9).

Programs

  • Magma
    Set(Sort([n: n in [1..10000], k in [0..20] | &*Intseq(n) eq 4^k]));
  • Mathematica
    FromDigits /@ Select[Join @@ Map[Tuples[2^Range[0, 3], #] &, Range@ 4], IntegerQ@ Log[4, Times @@ #] &] (* Michael De Vlieger, Mar 25 2017 *)

A316315 Numbers k such that the product of digits of k is a power of 12.

Original entry on oeis.org

1, 11, 26, 34, 43, 62, 111, 126, 134, 143, 162, 216, 223, 232, 261, 289, 298, 314, 322, 341, 368, 386, 413, 431, 449, 466, 494, 612, 621, 638, 646, 664, 683, 829, 836, 863, 892, 928, 944, 982, 1111, 1126, 1134, 1143, 1162, 1216, 1223, 1232, 1261, 1289, 1298
Offset: 1

Views

Author

Isaac Weiss and Henry Potts-Rubin, Jun 29 2018

Keywords

Examples

			466 is in the sequence because 4*6*6 = 144 = 12^2.
		

Crossrefs

Programs

  • Mathematica
    FromDigits /@ Select[Join @@ Map[Tuples[{1, 2, 3, 4, 6, 8, 9}, #] &, Range@4], IntegerQ@Log[12, Times @@ #] &]

Extensions

Two duplicate terms removed by Alois P. Heinz, Oct 20 2019

A385324 Numbers whose digits are all powers of the same single-digit base.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 24, 28, 31, 33, 39, 41, 42, 44, 48, 51, 55, 61, 66, 71, 77, 81, 82, 84, 88, 91, 93, 99, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 124, 128, 131, 133, 139, 141, 142, 144, 148
Offset: 1

Views

Author

Stefano Spezia, Jun 25 2025

Keywords

Examples

			84 is a term since its digits 8 and 4 are both powers of 2.
		

Crossrefs

Cf. A385351 (subsequence)

Programs

  • Mathematica
    Select[Range[0,148],SubsetQ[{0},dig=IntegerDigits[#]]||SubsetQ[{1,2,4,8},dig]||SubsetQ[{1,3,9},dig]||SubsetQ[{1,5},dig]||SubsetQ[{1,6},dig]||SubsetQ[{1,7},dig] &]

Formula

Showing 1-10 of 10 results.