A284324 Numbers k such that product of digits of k is a power of 8.
1, 8, 11, 18, 24, 42, 81, 88, 111, 118, 124, 142, 181, 188, 214, 222, 241, 248, 284, 412, 421, 428, 444, 482, 811, 818, 824, 842, 881, 888, 1111, 1118, 1124, 1142, 1181, 1188, 1214, 1222, 1241, 1248, 1284, 1412, 1421, 1428, 1444, 1482, 1811, 1818, 1824, 1842
Offset: 1
Examples
1111 is in the sequence because 1*1*1*1 = 1 = 8^0.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Magma
Set(Sort([n: n in [1..10000], k in [0..20] | &*Intseq(n) eq 8^k]));
-
Maple
dmax:= 4: # to get all terms with at most dmax digits B[0,1]:= {1,8}: B[1,1]:= {2}: B[2,1]:= {4}: for d from 2 to dmax do for j from 0 to 2 do B[j,d]:= map(t -> (10*t+1,10*t+8), B[j,d-1]) union map(t -> 10*t+4, B[(j+1) mod 3, d-1]) union map(t->10*t+2, B[(j+2) mod 3, d-1]) od od: seq(op(sort(convert(B[0,d],list))),d=1..dmax); # Robert Israel, Mar 31 2017
Comments