cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A284293 Numbers using only digits 1 and 6.

Original entry on oeis.org

1, 6, 11, 16, 61, 66, 111, 116, 161, 166, 611, 616, 661, 666, 1111, 1116, 1161, 1166, 1611, 1616, 1661, 1666, 6111, 6116, 6161, 6166, 6611, 6616, 6661, 6666, 11111, 11116, 11161, 11166, 11611, 11616, 11661, 11666, 16111, 16116, 16161, 16166, 16611, 16616
Offset: 1

Views

Author

Jaroslav Krizek, Mar 25 2017

Keywords

Comments

Product of digits of n is a power of 6; subsequence of A276038.
Prime terms are in A020454.

Crossrefs

Cf. Numbers using only digits 1 and k for k = 0 and k = 2 - 9: A007088 (k = 0), A007931 (k = 2), A032917 (k = 3), A032822 (k = 4) , A276037 (k = 5), this sequence (k = 6), A276039 (k = 7), A213084 (k = 8), A284294 (k = 9).

Programs

  • Magma
    [n: n in [1..20000] | Set(IntegerToSequence(n, 10)) subset {1, 6}];
    
  • Mathematica
    Join @@ (FromDigits /@ Tuples[{1,6}, #] & /@ Range[5]) (* Giovanni Resta, Mar 25 2017 *)
  • Python
    def A284293(n): return 5*int(bin(n+1)[3:])+(10**((n+1).bit_length()-1)-1)//9 # Chai Wah Wu, Jun 28 2025

A284295 Numbers n such that product of digits of n is a power of 9.

Original entry on oeis.org

1, 9, 11, 19, 33, 91, 99, 111, 119, 133, 191, 199, 313, 331, 339, 393, 911, 919, 933, 991, 999, 1111, 1119, 1133, 1191, 1199, 1313, 1331, 1339, 1393, 1911, 1919, 1933, 1991, 1999, 3113, 3131, 3139, 3193, 3311, 3319, 3333, 3391, 3399, 3913, 3931, 3939, 3993
Offset: 1

Views

Author

Jaroslav Krizek, Mar 25 2017

Keywords

Comments

Supersequence of A284294.

Examples

			1111 is in the sequence because 1*1*1*1 = 1 = 9^0.
		

Crossrefs

Cf. Numbers n such that product of digits of n is a power of k for k = 0 - 9: A284375 (k = 0), A002275 (k = 1), A028846 (k = 2), A174813 (k = 3), A284323 (k = 4), A276037 (k = 5), A276038 (k = 6), A276039 (k = 7), A284324 (k = 8), this sequence (k = 9).

Programs

  • Magma
    Set(Sort([n: n in [1..10000], k in [0..20] | &*Intseq(n) eq 9^k]))
  • Mathematica
    FromDigits /@ Select[Join @@ Map[Tuples[{1, 3, 9}, #] &, Range@ 4], IntegerQ@ Log[9, Times @@ #] &] (* Michael De Vlieger, Mar 25 2017 *)

A213084 Numbers consisting of ones and eights.

Original entry on oeis.org

1, 8, 11, 18, 81, 88, 111, 118, 181, 188, 811, 818, 881, 888, 1111, 1118, 1181, 1188, 1811, 1818, 1881, 1888, 8111, 8118, 8181, 8188, 8811, 8818, 8881, 8888, 11111, 11118, 11181, 11188, 11811, 11818, 11881, 11888, 18111, 18118, 18181, 18188, 18811, 18818
Offset: 1

Views

Author

Jens Ahlström, Jun 05 2012

Keywords

Comments

One and eight begin with vowels. The subsequence of primes begins 11, 181, 811, 1181, 1811, 8111. - Jonathan Vos Post, Jun 14 2012

Crossrefs

Cf. A020456 (primes in this sequence).
Cf. numbers consisting of 1s and ks: A007088 (k=0), A007931 (k=2), A032917 (k=3), A032822 (k=4), A276037 (k=5), A284293 (k=6), A276039 (k=7), A284294 (k=9).

Programs

  • Mathematica
    Flatten[Table[FromDigits/@Tuples[{1,8},n],{n,5}]] (* Harvey P. Dale, Aug 27 2014 *)
  • PARI
    is(n) = #setintersect(vecsort(digits(n), , 8), [0, 2, 3, 4, 5, 6, 7, 9])==0 \\ Felix Fröhlich, Sep 09 2019
  • Python
    res = []
    i = 0
    while len (res) < 260:
        for c in str(i):
            if c in '18':
                continue
            else:
                break
        else:
            res.append(i)
        i = i + 1
    print(res)
    
  • Python
    def a(n): return int(bin(n+1)[3:].replace('1', '8').replace('0', '1'))
    print([a(n) for n in range(1, 45)]) # Michael S. Branicky, Jun 26 2025
    
Showing 1-3 of 3 results.