cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A276039 Numbers using only digits 1 and 7.

Original entry on oeis.org

1, 7, 11, 17, 71, 77, 111, 117, 171, 177, 711, 717, 771, 777, 1111, 1117, 1171, 1177, 1711, 1717, 1771, 1777, 7111, 7117, 7171, 7177, 7711, 7717, 7771, 7777, 11111, 11117, 11171, 11177, 11711, 11717, 11771, 11777, 17111, 17117, 17171, 17177, 17711, 17717, 17771, 17777
Offset: 1

Views

Author

Vincenzo Librandi, Aug 19 2016

Keywords

Comments

Numbers k such that the product of digits of k is a power of 7.
There are no prime terms whose number of digits is divisible by 3: for every d that is a multiple of 3, every d-digit number j consisting of no digits other than 1's and 7's will have a digit sum divisible by 3, so j will also be divisible by 3. - Mikk Heidemaa, Mar 27 2021

Examples

			7717 is in the sequence because 7*7*1*7 = 343 = 7^3.
		

Crossrefs

Cf. similar sequences listed in A276037.

Programs

  • Magma
    [n: n in [1..24000] | Set(Intseq(n)) subset {1,7}];
    
  • Mathematica
    Select[Range[20000], IntegerQ[Log[7, Times@@(IntegerDigits[#])]] &] (* or *) Flatten[Table[FromDigits/@Tuples[{1, 7}, n], {n, 6}]]
  • PARI
    is(n) = my(d=digits(n), e=[0, 2, 3, 4, 5, 6, 8, 9]); if(#setintersect(Set(d), Set(e))==0, return(1), return(0)) \\ Felix Fröhlich, Aug 19 2016
    
  • PARI
    a(n) = { my(b = binary(n + 1)); b = b[^1]; b = apply(x -> 6*x + 1, b); fromdigits(b) } \\ David A. Corneth, Mar 27 2021
    
  • Python
    def a(n):
      b = bin(n+1)[3:]
      return int("".join(b.replace("1", "7").replace("0", "1")))
    print([a(n) for n in range(1, 47)]) # Michael S. Branicky, Mar 27 2021
    
  • Python
    def A276039(n): return 6*int(bin(n+1)[3:])+(10**((n+1).bit_length()-1)-1)//9 # Chai Wah Wu, Jun 28 2025

A276038 Numbers n such that product of digits of n is a power of 6.

Original entry on oeis.org

1, 6, 11, 16, 23, 32, 49, 61, 66, 94, 111, 116, 123, 132, 149, 161, 166, 194, 213, 229, 231, 236, 263, 292, 312, 321, 326, 334, 343, 362, 389, 398, 419, 433, 469, 491, 496, 611, 616, 623, 632, 649, 661, 666, 694, 839, 893, 914, 922, 938, 941, 946, 964
Offset: 1

Views

Author

Vincenzo Librandi, Aug 19 2016

Keywords

Examples

			946 is in the sequence because 9*4*6 = 216 = 6^3.
		

Crossrefs

Cf. similar sequences listed in A276037.
Cf. A199988.

Programs

  • Mathematica
    Select[Range[20000], IntegerQ[Log[6, Times@@(IntegerDigits[#])]] &]
  • PARI
    is(n) = my(d = vecsort(digits(n)), p = prod(i = 1, #d, d[i])); d[1] >= 1 && 6^logint(p, 6) == p \\ David A. Corneth, Jun 23 2018

A284293 Numbers using only digits 1 and 6.

Original entry on oeis.org

1, 6, 11, 16, 61, 66, 111, 116, 161, 166, 611, 616, 661, 666, 1111, 1116, 1161, 1166, 1611, 1616, 1661, 1666, 6111, 6116, 6161, 6166, 6611, 6616, 6661, 6666, 11111, 11116, 11161, 11166, 11611, 11616, 11661, 11666, 16111, 16116, 16161, 16166, 16611, 16616
Offset: 1

Views

Author

Jaroslav Krizek, Mar 25 2017

Keywords

Comments

Product of digits of n is a power of 6; subsequence of A276038.
Prime terms are in A020454.

Crossrefs

Cf. Numbers using only digits 1 and k for k = 0 and k = 2 - 9: A007088 (k = 0), A007931 (k = 2), A032917 (k = 3), A032822 (k = 4) , A276037 (k = 5), this sequence (k = 6), A276039 (k = 7), A213084 (k = 8), A284294 (k = 9).

Programs

  • Magma
    [n: n in [1..20000] | Set(IntegerToSequence(n, 10)) subset {1, 6}];
    
  • Mathematica
    Join @@ (FromDigits /@ Tuples[{1,6}, #] & /@ Range[5]) (* Giovanni Resta, Mar 25 2017 *)
  • Python
    def A284293(n): return 5*int(bin(n+1)[3:])+(10**((n+1).bit_length()-1)-1)//9 # Chai Wah Wu, Jun 28 2025

A284379 Numbers k with digits 3 and 5 only.

Original entry on oeis.org

3, 5, 33, 35, 53, 55, 333, 335, 353, 355, 533, 535, 553, 555, 3333, 3335, 3353, 3355, 3533, 3535, 3553, 3555, 5333, 5335, 5353, 5355, 5533, 5535, 5553, 5555, 33333, 33335, 33353, 33355, 33533, 33535, 33553, 33555, 35333, 35335, 35353, 35355, 35533, 35535
Offset: 1

Views

Author

Jaroslav Krizek, Mar 26 2017

Keywords

Comments

Prime terms are in A020462.

Crossrefs

Numbers n with digits 5 and k only for k = 0 - 4 and 6 - 9: A169964 (k = 0), A276037 (k = 1), A072961 (k = 2), this sequence (k = 3), A256290 (k = 4), A256291 (k = 6), A284380 (k = 7), A284381 (k = 8), A284382 (k = 9).

Programs

  • Magma
    [n: n in [1..100000] | Set(IntegerToSequence(n, 10)) subset {3, 5}];
  • Maple
    A:= 3,5: B:= [3,5];
    for i from 1 to 5 do
      B:= map(t -> (10*t+3,10*t+5), B);
      A:= A, op(B);
    od:
    A; # Robert Israel, Apr 13 2020
  • Mathematica
    Select[Range[35600], Times @@ Boole@ Map[MemberQ[{3, 5}, #] &, IntegerDigits@ #] > 0 &] (* or *)
    Table[FromDigits /@ Union@ Apply[Join, Map[Permutations@ # &, Tuples[{3, 5}, n]]], {n, 5}] // Flatten (* Michael De Vlieger, Mar 27 2017 *)

Formula

From Robert Israel, Apr 13 2020: (Start)
a(n) = 2*A007931(n)+A002275(n).
a(2n+1) = 10*a(n)+3.
a(2n+2) = 10*a(n)+5.
G.f. g(x) satisfies g(x) = 10*(x^2+x)*g(x^2) + (3*x+5*x^2)/(1-x^2). (End)

A284380 Numbers k with digits 5 and 7 only.

Original entry on oeis.org

5, 7, 55, 57, 75, 77, 555, 557, 575, 577, 755, 757, 775, 777, 5555, 5557, 5575, 5577, 5755, 5757, 5775, 5777, 7555, 7557, 7575, 7577, 7755, 7757, 7775, 7777, 55555, 55557, 55575, 55577, 55755, 55757, 55775, 55777, 57555, 57557, 57575, 57577, 57755, 57757
Offset: 1

Views

Author

Jaroslav Krizek, Mar 28 2017

Keywords

Crossrefs

Prime terms are in A020467.
Numbers n with digits 5 and k only for k = 0 - 4 and 6 - 9: A169964 (k = 0), A276037 (k = 1), A072961 (k = 2), A284379 (k = 3), A256290 (k = 4), A256291 (k = 6), this sequence (k = 7), A284381 (k = 8), A284382 (k = 9).

Programs

  • Magma
    [n: n in [1..100000] | Set(IntegerToSequence(n, 10)) subset {5, 7}];
    
  • Mathematica
    Join @@ ((FromDigits /@ Tuples[{5, 7}, #]) & /@ Range@ 5) (* Giovanni Resta, Mar 28 2017 *)
  • Python
    from sympy.utilities.iterables import multiset_permutations
    def aupton(terms):
      n, digits, alst = 0, 1, []
      while len(alst) < terms:
        mpstr = "".join(d*digits for d in "57")
        for mp in multiset_permutations(mpstr, digits):
          alst.append(int("".join(mp)))
          if len(alst) == terms: break
        else: digits += 1
      return alst
    print(aupton(44)) # Michael S. Branicky, May 07 2021

A328560 Numbers whose product of digits is a power of 10.

Original entry on oeis.org

1, 11, 25, 52, 111, 125, 152, 215, 251, 455, 512, 521, 545, 554, 1111, 1125, 1152, 1215, 1251, 1455, 1512, 1521, 1545, 1554, 2115, 2151, 2255, 2511, 2525, 2552, 4155, 4515, 4551, 5112, 5121, 5145, 5154, 5211, 5225, 5252, 5415, 5451, 5514, 5522, 5541, 5558, 5585
Offset: 1

Views

Author

Keywords

Comments

All terms must have only 1, 2, 4, 5, 8 as digits.
A subsequence of A328095.

Crossrefs

Programs

  • Maple
    q:= n-> (m-> m>0 and m=10^ilog[10](m))(mul(i, i=convert(n, base, 10))):
    select(q, [$1..6000])[];

A284295 Numbers n such that product of digits of n is a power of 9.

Original entry on oeis.org

1, 9, 11, 19, 33, 91, 99, 111, 119, 133, 191, 199, 313, 331, 339, 393, 911, 919, 933, 991, 999, 1111, 1119, 1133, 1191, 1199, 1313, 1331, 1339, 1393, 1911, 1919, 1933, 1991, 1999, 3113, 3131, 3139, 3193, 3311, 3319, 3333, 3391, 3399, 3913, 3931, 3939, 3993
Offset: 1

Views

Author

Jaroslav Krizek, Mar 25 2017

Keywords

Comments

Supersequence of A284294.

Examples

			1111 is in the sequence because 1*1*1*1 = 1 = 9^0.
		

Crossrefs

Cf. Numbers n such that product of digits of n is a power of k for k = 0 - 9: A284375 (k = 0), A002275 (k = 1), A028846 (k = 2), A174813 (k = 3), A284323 (k = 4), A276037 (k = 5), A276038 (k = 6), A276039 (k = 7), A284324 (k = 8), this sequence (k = 9).

Programs

  • Magma
    Set(Sort([n: n in [1..10000], k in [0..20] | &*Intseq(n) eq 9^k]))
  • Mathematica
    FromDigits /@ Select[Join @@ Map[Tuples[{1, 3, 9}, #] &, Range@ 4], IntegerQ@ Log[9, Times @@ #] &] (* Michael De Vlieger, Mar 25 2017 *)

A284324 Numbers k such that product of digits of k is a power of 8.

Original entry on oeis.org

1, 8, 11, 18, 24, 42, 81, 88, 111, 118, 124, 142, 181, 188, 214, 222, 241, 248, 284, 412, 421, 428, 444, 482, 811, 818, 824, 842, 881, 888, 1111, 1118, 1124, 1142, 1181, 1188, 1214, 1222, 1241, 1248, 1284, 1412, 1421, 1428, 1444, 1482, 1811, 1818, 1824, 1842
Offset: 1

Views

Author

Jaroslav Krizek, Mar 26 2017

Keywords

Comments

There are (2 + 4^d)/3 terms with d digits, for each d >= 1. - Robert Israel, Mar 31 2017

Examples

			1111 is in the sequence because 1*1*1*1 = 1 = 8^0.
		

Crossrefs

Supersequence of A213084.
Cf. Numbers n such that product of digits of n is a power of k for k = 0 - 9: A284375 (k = 0), A002275 (k = 1), A028846 (k = 2), A174813 (k = 3), A284323 (k = 4), A276037 (k = 5), A276038 (k = 6), A276039 (k = 7), this sequence (k = 8), A284295 (k = 9).

Programs

  • Magma
    Set(Sort([n: n in [1..10000], k in [0..20] | &*Intseq(n) eq 8^k]));
  • Maple
    dmax:= 4: # to get all terms with at most dmax digits
    B[0,1]:= {1,8}:
    B[1,1]:= {2}:
    B[2,1]:= {4}:
    for d from 2 to dmax do
      for j from 0 to 2 do
        B[j,d]:= map(t -> (10*t+1,10*t+8), B[j,d-1])
            union map(t -> 10*t+4, B[(j+1) mod 3, d-1])
            union map(t->10*t+2, B[(j+2) mod 3, d-1])
    od od:
    seq(op(sort(convert(B[0,d],list))),d=1..dmax); # Robert Israel, Mar 31 2017

A284375 Numbers whose product of digits is a power of 0.

Original entry on oeis.org

0, 1, 10, 11, 20, 30, 40, 50, 60, 70, 80, 90, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 120, 130, 140, 150, 160, 170, 180, 190, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 301, 302, 303
Offset: 1

Views

Author

Jaroslav Krizek, Mar 26 2017

Keywords

Examples

			111 is in the sequence because 1*1*1 = 1 = 0^0.
		

Crossrefs

Union of A011540 and A002275. Supersequence of A007088.
Cf. Numbers n such that product of digits of n is a power of k for k = 0 - 9: this sequence (k = 0), A002275 (k = 1), A028846 (k = 2), A174813 (k = 3), A284323 (k = 4), A276037 (k = 5), A276038 (k = 6), A276039 (k = 7), A284324 (k = 8), A284295 (k = 9), A328560 (k = 10).

Programs

  • Magma
    Set(Sort([n: n in [1..10000], k in [0..20] | &*Intseq(n) eq 0^k]));
  • Mathematica
    Select[Range[0, 500], Times@@ IntegerDigits[#] <2 &] (* Indranil Ghosh, Mar 26 2017 *)

A213084 Numbers consisting of ones and eights.

Original entry on oeis.org

1, 8, 11, 18, 81, 88, 111, 118, 181, 188, 811, 818, 881, 888, 1111, 1118, 1181, 1188, 1811, 1818, 1881, 1888, 8111, 8118, 8181, 8188, 8811, 8818, 8881, 8888, 11111, 11118, 11181, 11188, 11811, 11818, 11881, 11888, 18111, 18118, 18181, 18188, 18811, 18818
Offset: 1

Views

Author

Jens Ahlström, Jun 05 2012

Keywords

Comments

One and eight begin with vowels. The subsequence of primes begins 11, 181, 811, 1181, 1811, 8111. - Jonathan Vos Post, Jun 14 2012

Crossrefs

Cf. A020456 (primes in this sequence).
Cf. numbers consisting of 1s and ks: A007088 (k=0), A007931 (k=2), A032917 (k=3), A032822 (k=4), A276037 (k=5), A284293 (k=6), A276039 (k=7), A284294 (k=9).

Programs

  • Mathematica
    Flatten[Table[FromDigits/@Tuples[{1,8},n],{n,5}]] (* Harvey P. Dale, Aug 27 2014 *)
  • PARI
    is(n) = #setintersect(vecsort(digits(n), , 8), [0, 2, 3, 4, 5, 6, 7, 9])==0 \\ Felix Fröhlich, Sep 09 2019
  • Python
    res = []
    i = 0
    while len (res) < 260:
        for c in str(i):
            if c in '18':
                continue
            else:
                break
        else:
            res.append(i)
        i = i + 1
    print(res)
    
  • Python
    def a(n): return int(bin(n+1)[3:].replace('1', '8').replace('0', '1'))
    print([a(n) for n in range(1, 45)]) # Michael S. Branicky, Jun 26 2025
    
Showing 1-10 of 16 results. Next