cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A328095 Revenant numbers: numbers k such that k multiplied by the product of all its digits contains k as a substring.

Original entry on oeis.org

0, 1, 5, 6, 11, 25, 52, 77, 87, 111, 125, 152, 215, 251, 375, 376, 455, 512, 521, 545, 554, 736, 792, 1111, 1125, 1152, 1215, 1251, 1455, 1512, 1521, 1545, 1554, 2115, 2151, 2174, 2255, 2511, 2525, 2552, 4155, 4515, 4551, 5112, 5121, 5145, 5154, 5211, 5225, 5252, 5415, 5451, 5514, 5522, 5541, 5558, 5585, 5855, 8555, 8772, 9375
Offset: 1

Views

Author

N. J. A. Sloane, Oct 19 2019

Keywords

Comments

Sequence is infinite since 11...1 is always a member.
Numbers whose product of digits is a power of ten (and thus necessarily must only have 1,2,4,5,8 as digits) is a subsequence. - Chai Wah Wu, Oct 19 2019

Examples

			87 * 8 * 7 = 4872. As the string 87 is visible in the result, 87 is a revenant.
So is 792 because 792 * 7 * 9 * 2 = 99792.
And so is 9375 as 9375 * 9 * 3 * 7 * 5 = 8859375.
		

References

  • Eric Angelini, Posting to Sequence Fans Mailing List, Oct 19 2019

Crossrefs

Subsequences are: A328544, A328560, A328561.

Programs

  • Maple
    a:= proc(n) option remember; local k; if n=1 then 0 else
          for k from 1+a(n-1) while searchtext(cat(k), cat(k*
          mul(i, i=convert(k, base, 10))))=0 do od: k fi
        end:
    seq(a(n), n=1..75);  # Alois P. Heinz, Oct 19 2019
  • Mathematica
    Select[Range[0,10000],SequenceCount[IntegerDigits[#*(Times@@IntegerDigits[ #])],IntegerDigits[#]]>0&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 19 2019 *)
  • PARI
    is_A328095(n)={my(d,m); if(d=vecprod(digits(n))*n, m=10^logint(n, 10)*10; until(n>d\=10,d%m==n && return(1)),!n)} \\ M. F. Hasler, Oct 20 2019
  • Python
    from functools import reduce
    from operator import mul
    n, A328095_list = 0, []
    while len(A328095_list) < 10000:
        sn = str(n)
        if  sn in str(n*reduce(mul,(int(d) for d in sn))):
            A328095_list.append(n)
        n += 1 # Chai Wah Wu, Oct 19 2019
    

Formula

A284375 Numbers whose product of digits is a power of 0.

Original entry on oeis.org

0, 1, 10, 11, 20, 30, 40, 50, 60, 70, 80, 90, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 120, 130, 140, 150, 160, 170, 180, 190, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 301, 302, 303
Offset: 1

Views

Author

Jaroslav Krizek, Mar 26 2017

Keywords

Examples

			111 is in the sequence because 1*1*1 = 1 = 0^0.
		

Crossrefs

Union of A011540 and A002275. Supersequence of A007088.
Cf. Numbers n such that product of digits of n is a power of k for k = 0 - 9: this sequence (k = 0), A002275 (k = 1), A028846 (k = 2), A174813 (k = 3), A284323 (k = 4), A276037 (k = 5), A276038 (k = 6), A276039 (k = 7), A284324 (k = 8), A284295 (k = 9), A328560 (k = 10).

Programs

  • Magma
    Set(Sort([n: n in [1..10000], k in [0..20] | &*Intseq(n) eq 0^k]));
  • Mathematica
    Select[Range[0, 500], Times@@ IntegerDigits[#] <2 &] (* Indranil Ghosh, Mar 26 2017 *)

A326833 Numbers whose sum of digits is a power of 10.

Original entry on oeis.org

1, 10, 19, 28, 37, 46, 55, 64, 73, 82, 91, 100, 109, 118, 127, 136, 145, 154, 163, 172, 181, 190, 208, 217, 226, 235, 244, 253, 262, 271, 280, 307, 316, 325, 334, 343, 352, 361, 370, 406, 415, 424, 433, 442, 451, 460, 505, 514, 523, 532, 541, 550, 604, 613
Offset: 1

Views

Author

Alois P. Heinz, Oct 20 2019

Keywords

Crossrefs

Subsequence of A326806.

Programs

  • Maple
    q:= n-> (m-> m>0 and m=10^ilog[10](m))(add(i, i=convert(n, base, 10))):
    select(q, [$1..1000])[];
  • PARI
    isok(n) = my(s=sumdigits(n), k); (s==1) || (s==10) || (ispower(s,,&k) && (k==10)); \\ Michel Marcus, Oct 21 2019

A316315 Numbers k such that the product of digits of k is a power of 12.

Original entry on oeis.org

1, 11, 26, 34, 43, 62, 111, 126, 134, 143, 162, 216, 223, 232, 261, 289, 298, 314, 322, 341, 368, 386, 413, 431, 449, 466, 494, 612, 621, 638, 646, 664, 683, 829, 836, 863, 892, 928, 944, 982, 1111, 1126, 1134, 1143, 1162, 1216, 1223, 1232, 1261, 1289, 1298
Offset: 1

Views

Author

Isaac Weiss and Henry Potts-Rubin, Jun 29 2018

Keywords

Examples

			466 is in the sequence because 4*6*6 = 144 = 12^2.
		

Crossrefs

Programs

  • Mathematica
    FromDigits /@ Select[Join @@ Map[Tuples[{1, 2, 3, 4, 6, 8, 9}, #] &, Range@4], IntegerQ@Log[12, Times @@ #] &]

Extensions

Two duplicate terms removed by Alois P. Heinz, Oct 20 2019

A328561 Numbers in A328095 whose product of digits is not a power of 10.

Original entry on oeis.org

0, 5, 6, 77, 87, 375, 376, 736, 792, 2174, 8772, 9375, 11628, 9859155, 23255814, 62227496, 398472522, 3691262781, 6886826188, 517322161894, 774773248793, 2675959368829, 51964667728417, 52446797239186
Offset: 1

Views

Author

Keywords

Comments

A subsequence of A328095. All other terms in A328095 have a product of digits that is a power of 10.
a(25) > 10^14. - Giovanni Resta, Oct 27 2019

Crossrefs

Extensions

a(20)-a(22) from Giovanni Resta, Oct 23 2019
a(23)-a(24) from Giovanni Resta, Oct 24 2019
Showing 1-5 of 5 results.