cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A276037 Numbers using only digits 1 and 5.

Original entry on oeis.org

1, 5, 11, 15, 51, 55, 111, 115, 151, 155, 511, 515, 551, 555, 1111, 1115, 1151, 1155, 1511, 1515, 1551, 1555, 5111, 5115, 5151, 5155, 5511, 5515, 5551, 5555, 11111, 11115, 11151, 11155, 11511, 11515, 11551, 11555, 15111, 15115, 15151, 15155, 15511, 15515
Offset: 1

Views

Author

Vincenzo Librandi, Aug 17 2016

Keywords

Comments

Numbers n such that product of digits of n is a power of 5.

Examples

			5551 is in the sequence because all of its digits are 1 or 5 and consequently because the product of digits, 5*5*5*1 = 125 = 5^3 is a power of 5.
		

Crossrefs

Cf. numbers n such that product of digits of n is a power of k: A028846 (k=2), A174813 (k=3), this sequence (k=5), A276038 (k=6), A276039 (k=7).
Cf. A199985 (a subsequence).

Programs

  • Magma
    [n: n in [1..20000] | Set(Intseq(n)) subset {1, 5}]; // Vincenzo Librandi, Aug 19 2016
    
  • Maple
    S[0]:= [0]:
    for d from 1 to 6 do S[d]:= map(t -> (10*t+1, 10*t+5), S[d-1]) od:
    seq(op(S[d]),d=1..6); # Robert Israel, Aug 22 2016
  • Mathematica
    Select[Range[20000], IntegerQ[Log[5, Times@@(IntegerDigits[#])]]&]
  • PARI
    a(n) = my(v=[1,5], b=binary(n+1), d=vector(#b-1,i, v[b[i+1]+1])); sum(i=1, #d, d[i] * 10^(#d-i)) \\ David A. Corneth, Aug 22 2016
  • Python
    from itertools import product
    A276037_list = [int(''.join(d)) for l in range(1,10) for d in product('15',repeat=l)] # Chai Wah Wu, Aug 18 2016
    
  • Python
    def A276037(n): return (int(bin(n+1)[3:])<<2)+(10**((n+1).bit_length()-1)-1)//9 # Chai Wah Wu, Jun 28 2025
    

Formula

From Robert Israel, Aug 22 2016: (Start)
a(2n+1) = 10 a(n) + 1.
a(2n+2) = 10 a(n) + 5.
G.f. g(x) satisfies g(x) = 10 (x + x^2) g(x^2) + (x + 5 x^2)/(1 - x^2). (End)

Extensions

Example changed by David A. Corneth, Aug 22 2016

A284293 Numbers using only digits 1 and 6.

Original entry on oeis.org

1, 6, 11, 16, 61, 66, 111, 116, 161, 166, 611, 616, 661, 666, 1111, 1116, 1161, 1166, 1611, 1616, 1661, 1666, 6111, 6116, 6161, 6166, 6611, 6616, 6661, 6666, 11111, 11116, 11161, 11166, 11611, 11616, 11661, 11666, 16111, 16116, 16161, 16166, 16611, 16616
Offset: 1

Views

Author

Jaroslav Krizek, Mar 25 2017

Keywords

Comments

Product of digits of n is a power of 6; subsequence of A276038.
Prime terms are in A020454.

Crossrefs

Cf. Numbers using only digits 1 and k for k = 0 and k = 2 - 9: A007088 (k = 0), A007931 (k = 2), A032917 (k = 3), A032822 (k = 4) , A276037 (k = 5), this sequence (k = 6), A276039 (k = 7), A213084 (k = 8), A284294 (k = 9).

Programs

  • Magma
    [n: n in [1..20000] | Set(IntegerToSequence(n, 10)) subset {1, 6}];
    
  • Mathematica
    Join @@ (FromDigits /@ Tuples[{1,6}, #] & /@ Range[5]) (* Giovanni Resta, Mar 25 2017 *)
  • Python
    def A284293(n): return 5*int(bin(n+1)[3:])+(10**((n+1).bit_length()-1)-1)//9 # Chai Wah Wu, Jun 28 2025

A284295 Numbers n such that product of digits of n is a power of 9.

Original entry on oeis.org

1, 9, 11, 19, 33, 91, 99, 111, 119, 133, 191, 199, 313, 331, 339, 393, 911, 919, 933, 991, 999, 1111, 1119, 1133, 1191, 1199, 1313, 1331, 1339, 1393, 1911, 1919, 1933, 1991, 1999, 3113, 3131, 3139, 3193, 3311, 3319, 3333, 3391, 3399, 3913, 3931, 3939, 3993
Offset: 1

Views

Author

Jaroslav Krizek, Mar 25 2017

Keywords

Comments

Supersequence of A284294.

Examples

			1111 is in the sequence because 1*1*1*1 = 1 = 9^0.
		

Crossrefs

Cf. Numbers n such that product of digits of n is a power of k for k = 0 - 9: A284375 (k = 0), A002275 (k = 1), A028846 (k = 2), A174813 (k = 3), A284323 (k = 4), A276037 (k = 5), A276038 (k = 6), A276039 (k = 7), A284324 (k = 8), this sequence (k = 9).

Programs

  • Magma
    Set(Sort([n: n in [1..10000], k in [0..20] | &*Intseq(n) eq 9^k]))
  • Mathematica
    FromDigits /@ Select[Join @@ Map[Tuples[{1, 3, 9}, #] &, Range@ 4], IntegerQ@ Log[9, Times @@ #] &] (* Michael De Vlieger, Mar 25 2017 *)

A284324 Numbers k such that product of digits of k is a power of 8.

Original entry on oeis.org

1, 8, 11, 18, 24, 42, 81, 88, 111, 118, 124, 142, 181, 188, 214, 222, 241, 248, 284, 412, 421, 428, 444, 482, 811, 818, 824, 842, 881, 888, 1111, 1118, 1124, 1142, 1181, 1188, 1214, 1222, 1241, 1248, 1284, 1412, 1421, 1428, 1444, 1482, 1811, 1818, 1824, 1842
Offset: 1

Views

Author

Jaroslav Krizek, Mar 26 2017

Keywords

Comments

There are (2 + 4^d)/3 terms with d digits, for each d >= 1. - Robert Israel, Mar 31 2017

Examples

			1111 is in the sequence because 1*1*1*1 = 1 = 8^0.
		

Crossrefs

Supersequence of A213084.
Cf. Numbers n such that product of digits of n is a power of k for k = 0 - 9: A284375 (k = 0), A002275 (k = 1), A028846 (k = 2), A174813 (k = 3), A284323 (k = 4), A276037 (k = 5), A276038 (k = 6), A276039 (k = 7), this sequence (k = 8), A284295 (k = 9).

Programs

  • Magma
    Set(Sort([n: n in [1..10000], k in [0..20] | &*Intseq(n) eq 8^k]));
  • Maple
    dmax:= 4: # to get all terms with at most dmax digits
    B[0,1]:= {1,8}:
    B[1,1]:= {2}:
    B[2,1]:= {4}:
    for d from 2 to dmax do
      for j from 0 to 2 do
        B[j,d]:= map(t -> (10*t+1,10*t+8), B[j,d-1])
            union map(t -> 10*t+4, B[(j+1) mod 3, d-1])
            union map(t->10*t+2, B[(j+2) mod 3, d-1])
    od od:
    seq(op(sort(convert(B[0,d],list))),d=1..dmax); # Robert Israel, Mar 31 2017

A284375 Numbers whose product of digits is a power of 0.

Original entry on oeis.org

0, 1, 10, 11, 20, 30, 40, 50, 60, 70, 80, 90, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 120, 130, 140, 150, 160, 170, 180, 190, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 301, 302, 303
Offset: 1

Views

Author

Jaroslav Krizek, Mar 26 2017

Keywords

Examples

			111 is in the sequence because 1*1*1 = 1 = 0^0.
		

Crossrefs

Union of A011540 and A002275. Supersequence of A007088.
Cf. Numbers n such that product of digits of n is a power of k for k = 0 - 9: this sequence (k = 0), A002275 (k = 1), A028846 (k = 2), A174813 (k = 3), A284323 (k = 4), A276037 (k = 5), A276038 (k = 6), A276039 (k = 7), A284324 (k = 8), A284295 (k = 9), A328560 (k = 10).

Programs

  • Magma
    Set(Sort([n: n in [1..10000], k in [0..20] | &*Intseq(n) eq 0^k]));
  • Mathematica
    Select[Range[0, 500], Times@@ IntegerDigits[#] <2 &] (* Indranil Ghosh, Mar 26 2017 *)

A284323 Numbers k such that product of digits of k is a power of 4.

Original entry on oeis.org

1, 4, 11, 14, 22, 28, 41, 44, 82, 88, 111, 114, 122, 128, 141, 144, 182, 188, 212, 218, 221, 224, 242, 248, 281, 284, 411, 414, 422, 428, 441, 444, 482, 488, 812, 818, 821, 824, 842, 848, 881, 884, 1111, 1114, 1122, 1128, 1141, 1144, 1182, 1188, 1212, 1218
Offset: 0

Views

Author

Jaroslav Krizek, Mar 25 2017

Keywords

Examples

			1111 is in the sequence because 1*1*1*1 = 1 = 4^0.
		

Crossrefs

Supersequence of A032822.
Cf. Numbers n such that product of digits of n is a power of k for k = 0 - 9: A284375 (k = 0), A002275 (k = 1), A028846 (k = 2), A174813 (k = 3), this sequence (k = 4), A276037 (k = 5), A276038 (k = 6), A276039 (k = 7), A284324 (k = 8), A284295 (k = 9).

Programs

  • Magma
    Set(Sort([n: n in [1..10000], k in [0..20] | &*Intseq(n) eq 4^k]));
  • Mathematica
    FromDigits /@ Select[Join @@ Map[Tuples[2^Range[0, 3], #] &, Range@ 4], IntegerQ@ Log[4, Times @@ #] &] (* Michael De Vlieger, Mar 25 2017 *)

A316315 Numbers k such that the product of digits of k is a power of 12.

Original entry on oeis.org

1, 11, 26, 34, 43, 62, 111, 126, 134, 143, 162, 216, 223, 232, 261, 289, 298, 314, 322, 341, 368, 386, 413, 431, 449, 466, 494, 612, 621, 638, 646, 664, 683, 829, 836, 863, 892, 928, 944, 982, 1111, 1126, 1134, 1143, 1162, 1216, 1223, 1232, 1261, 1289, 1298
Offset: 1

Views

Author

Isaac Weiss and Henry Potts-Rubin, Jun 29 2018

Keywords

Examples

			466 is in the sequence because 4*6*6 = 144 = 12^2.
		

Crossrefs

Programs

  • Mathematica
    FromDigits /@ Select[Join @@ Map[Tuples[{1, 2, 3, 4, 6, 8, 9}, #] &, Range@4], IntegerQ@Log[12, Times @@ #] &]

Extensions

Two duplicate terms removed by Alois P. Heinz, Oct 20 2019

A304392 Numbers without a digit 1 with digits in nondecreasing order and the product of digits is a power of 6.

Original entry on oeis.org

6, 23, 49, 66, 229, 236, 334, 389, 469, 666, 2233, 2269, 2349, 2366, 2899, 3338, 3346, 3689, 4499, 4669, 6666, 22239, 22336, 22499, 22669, 23334, 23389, 23469, 23666, 26899, 33368, 33449, 33466, 34899, 36689, 44699, 46669, 66666, 88999, 222299, 222333, 222369, 223349
Offset: 1

Views

Author

David A. Corneth, Jun 20 2018

Keywords

Comments

Applying any of the following to terms in this sequence in any order gives a term from A276038: - Prepend a 1. - Permute digits. - Do nothing.
Subsequence of A276038.

Examples

			229 is in the sequence because it has digits in nondecreasing order, no digit 1 and a product of digits 2*2*9 = 36 which is a power of 6.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], And[FreeQ[#, 1], AllTrue[Differences@ #, # > -1 &], IntegerQ@ Log[6, Times @@ #]] &@ IntegerDigits@ # &] (* Michael De Vlieger, Jun 30 2018 *)
  • PARI
    is(n) = my(d = digits(n), p = prod(i = 1, #d, d[i])); d[1] >= 2 && vecsort(d) == d && 6^logint(p, 6) == p
    
  • Python
    from math import prod
    from sympy.utilities.iterables import multiset_combinations
    def auptod(maxdigs):
      n, digs, alst, targets = 0, 1, [], set(6**i for i in range(1, maxdigs*3))
      for digs in range(1, maxdigs+1):
        mcstr = "".join(str(d)*digs for d in "234689")
        for mc in multiset_combinations(mcstr, digs):
          if prod(map(int, mc)) in targets: alst.append(int("".join(mc)))
      return alst
    print(auptod(6)) # Michael S. Branicky, Jun 23 2021
Showing 1-8 of 8 results.