cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A276037 Numbers using only digits 1 and 5.

Original entry on oeis.org

1, 5, 11, 15, 51, 55, 111, 115, 151, 155, 511, 515, 551, 555, 1111, 1115, 1151, 1155, 1511, 1515, 1551, 1555, 5111, 5115, 5151, 5155, 5511, 5515, 5551, 5555, 11111, 11115, 11151, 11155, 11511, 11515, 11551, 11555, 15111, 15115, 15151, 15155, 15511, 15515
Offset: 1

Views

Author

Vincenzo Librandi, Aug 17 2016

Keywords

Comments

Numbers n such that product of digits of n is a power of 5.

Examples

			5551 is in the sequence because all of its digits are 1 or 5 and consequently because the product of digits, 5*5*5*1 = 125 = 5^3 is a power of 5.
		

Crossrefs

Cf. numbers n such that product of digits of n is a power of k: A028846 (k=2), A174813 (k=3), this sequence (k=5), A276038 (k=6), A276039 (k=7).
Cf. A199985 (a subsequence).

Programs

  • Magma
    [n: n in [1..20000] | Set(Intseq(n)) subset {1, 5}]; // Vincenzo Librandi, Aug 19 2016
    
  • Maple
    S[0]:= [0]:
    for d from 1 to 6 do S[d]:= map(t -> (10*t+1, 10*t+5), S[d-1]) od:
    seq(op(S[d]),d=1..6); # Robert Israel, Aug 22 2016
  • Mathematica
    Select[Range[20000], IntegerQ[Log[5, Times@@(IntegerDigits[#])]]&]
  • PARI
    a(n) = my(v=[1,5], b=binary(n+1), d=vector(#b-1,i, v[b[i+1]+1])); sum(i=1, #d, d[i] * 10^(#d-i)) \\ David A. Corneth, Aug 22 2016
  • Python
    from itertools import product
    A276037_list = [int(''.join(d)) for l in range(1,10) for d in product('15',repeat=l)] # Chai Wah Wu, Aug 18 2016
    
  • Python
    def A276037(n): return (int(bin(n+1)[3:])<<2)+(10**((n+1).bit_length()-1)-1)//9 # Chai Wah Wu, Jun 28 2025
    

Formula

From Robert Israel, Aug 22 2016: (Start)
a(2n+1) = 10 a(n) + 1.
a(2n+2) = 10 a(n) + 5.
G.f. g(x) satisfies g(x) = 10 (x + x^2) g(x^2) + (x + 5 x^2)/(1 - x^2). (End)

Extensions

Example changed by David A. Corneth, Aug 22 2016

A020455 Primes that contain digits 1 and 7 only.

Original entry on oeis.org

7, 11, 17, 71, 1117, 1171, 1777, 7177, 7717, 11117, 11171, 11177, 11717, 11777, 17117, 71171, 71711, 71777, 77171, 77711, 1111711, 1111771, 1117111, 1117117, 1117177, 1171111, 1171117, 1171771, 1177171, 1177711, 1177717, 1711117, 1717117, 1771177, 1771717
Offset: 1

Views

Author

Keywords

Comments

There are no terms whose number of digits is divisible by 3: for every d that is a multiple of 3, every d-digit number j consisting of no digits other than 1's and 7's will have a digit sum divisible by 3, so j will also be divisible by 3. - Mikk Heidemaa, Mar 26 2021

Crossrefs

Subsequence of A030096.

Programs

  • Magma
    [p: p in PrimesUpTo(1771177) | Set(Intseq(p)) subset [1, 7]]; // Vincenzo Librandi, Jul 27 2012
    
  • Mathematica
    Flatten[Table[Select[FromDigits/@Tuples[{1,7},n],PrimeQ],{n,7}]] (* Vincenzo Librandi, Jul 27 2012 *)
  • Python
    from sympy import isprime
    def only17(n): return int(bin(n+1)[3:].replace('1', '7').replace('0', '1'))
    def auptod(digs):
      return list(filter(isprime, (only17(i) for i in range(1, 2**(digs+1)-1))))
    print(auptod(8)) # Michael S. Branicky, Jul 11 2021

Formula

{ A000040 } intersect { A276039 }.

A284293 Numbers using only digits 1 and 6.

Original entry on oeis.org

1, 6, 11, 16, 61, 66, 111, 116, 161, 166, 611, 616, 661, 666, 1111, 1116, 1161, 1166, 1611, 1616, 1661, 1666, 6111, 6116, 6161, 6166, 6611, 6616, 6661, 6666, 11111, 11116, 11161, 11166, 11611, 11616, 11661, 11666, 16111, 16116, 16161, 16166, 16611, 16616
Offset: 1

Views

Author

Jaroslav Krizek, Mar 25 2017

Keywords

Comments

Product of digits of n is a power of 6; subsequence of A276038.
Prime terms are in A020454.

Crossrefs

Cf. Numbers using only digits 1 and k for k = 0 and k = 2 - 9: A007088 (k = 0), A007931 (k = 2), A032917 (k = 3), A032822 (k = 4) , A276037 (k = 5), this sequence (k = 6), A276039 (k = 7), A213084 (k = 8), A284294 (k = 9).

Programs

  • Magma
    [n: n in [1..20000] | Set(IntegerToSequence(n, 10)) subset {1, 6}];
    
  • Mathematica
    Join @@ (FromDigits /@ Tuples[{1,6}, #] & /@ Range[5]) (* Giovanni Resta, Mar 25 2017 *)
  • Python
    def A284293(n): return 5*int(bin(n+1)[3:])+(10**((n+1).bit_length()-1)-1)//9 # Chai Wah Wu, Jun 28 2025

A284295 Numbers n such that product of digits of n is a power of 9.

Original entry on oeis.org

1, 9, 11, 19, 33, 91, 99, 111, 119, 133, 191, 199, 313, 331, 339, 393, 911, 919, 933, 991, 999, 1111, 1119, 1133, 1191, 1199, 1313, 1331, 1339, 1393, 1911, 1919, 1933, 1991, 1999, 3113, 3131, 3139, 3193, 3311, 3319, 3333, 3391, 3399, 3913, 3931, 3939, 3993
Offset: 1

Views

Author

Jaroslav Krizek, Mar 25 2017

Keywords

Comments

Supersequence of A284294.

Examples

			1111 is in the sequence because 1*1*1*1 = 1 = 9^0.
		

Crossrefs

Cf. Numbers n such that product of digits of n is a power of k for k = 0 - 9: A284375 (k = 0), A002275 (k = 1), A028846 (k = 2), A174813 (k = 3), A284323 (k = 4), A276037 (k = 5), A276038 (k = 6), A276039 (k = 7), A284324 (k = 8), this sequence (k = 9).

Programs

  • Magma
    Set(Sort([n: n in [1..10000], k in [0..20] | &*Intseq(n) eq 9^k]))
  • Mathematica
    FromDigits /@ Select[Join @@ Map[Tuples[{1, 3, 9}, #] &, Range@ 4], IntegerQ@ Log[9, Times @@ #] &] (* Michael De Vlieger, Mar 25 2017 *)

A284324 Numbers k such that product of digits of k is a power of 8.

Original entry on oeis.org

1, 8, 11, 18, 24, 42, 81, 88, 111, 118, 124, 142, 181, 188, 214, 222, 241, 248, 284, 412, 421, 428, 444, 482, 811, 818, 824, 842, 881, 888, 1111, 1118, 1124, 1142, 1181, 1188, 1214, 1222, 1241, 1248, 1284, 1412, 1421, 1428, 1444, 1482, 1811, 1818, 1824, 1842
Offset: 1

Views

Author

Jaroslav Krizek, Mar 26 2017

Keywords

Comments

There are (2 + 4^d)/3 terms with d digits, for each d >= 1. - Robert Israel, Mar 31 2017

Examples

			1111 is in the sequence because 1*1*1*1 = 1 = 8^0.
		

Crossrefs

Supersequence of A213084.
Cf. Numbers n such that product of digits of n is a power of k for k = 0 - 9: A284375 (k = 0), A002275 (k = 1), A028846 (k = 2), A174813 (k = 3), A284323 (k = 4), A276037 (k = 5), A276038 (k = 6), A276039 (k = 7), this sequence (k = 8), A284295 (k = 9).

Programs

  • Magma
    Set(Sort([n: n in [1..10000], k in [0..20] | &*Intseq(n) eq 8^k]));
  • Maple
    dmax:= 4: # to get all terms with at most dmax digits
    B[0,1]:= {1,8}:
    B[1,1]:= {2}:
    B[2,1]:= {4}:
    for d from 2 to dmax do
      for j from 0 to 2 do
        B[j,d]:= map(t -> (10*t+1,10*t+8), B[j,d-1])
            union map(t -> 10*t+4, B[(j+1) mod 3, d-1])
            union map(t->10*t+2, B[(j+2) mod 3, d-1])
    od od:
    seq(op(sort(convert(B[0,d],list))),d=1..dmax); # Robert Israel, Mar 31 2017

A284375 Numbers whose product of digits is a power of 0.

Original entry on oeis.org

0, 1, 10, 11, 20, 30, 40, 50, 60, 70, 80, 90, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 120, 130, 140, 150, 160, 170, 180, 190, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 301, 302, 303
Offset: 1

Views

Author

Jaroslav Krizek, Mar 26 2017

Keywords

Examples

			111 is in the sequence because 1*1*1 = 1 = 0^0.
		

Crossrefs

Union of A011540 and A002275. Supersequence of A007088.
Cf. Numbers n such that product of digits of n is a power of k for k = 0 - 9: this sequence (k = 0), A002275 (k = 1), A028846 (k = 2), A174813 (k = 3), A284323 (k = 4), A276037 (k = 5), A276038 (k = 6), A276039 (k = 7), A284324 (k = 8), A284295 (k = 9), A328560 (k = 10).

Programs

  • Magma
    Set(Sort([n: n in [1..10000], k in [0..20] | &*Intseq(n) eq 0^k]));
  • Mathematica
    Select[Range[0, 500], Times@@ IntegerDigits[#] <2 &] (* Indranil Ghosh, Mar 26 2017 *)

A213084 Numbers consisting of ones and eights.

Original entry on oeis.org

1, 8, 11, 18, 81, 88, 111, 118, 181, 188, 811, 818, 881, 888, 1111, 1118, 1181, 1188, 1811, 1818, 1881, 1888, 8111, 8118, 8181, 8188, 8811, 8818, 8881, 8888, 11111, 11118, 11181, 11188, 11811, 11818, 11881, 11888, 18111, 18118, 18181, 18188, 18811, 18818
Offset: 1

Views

Author

Jens Ahlström, Jun 05 2012

Keywords

Comments

One and eight begin with vowels. The subsequence of primes begins 11, 181, 811, 1181, 1811, 8111. - Jonathan Vos Post, Jun 14 2012

Crossrefs

Cf. A020456 (primes in this sequence).
Cf. numbers consisting of 1s and ks: A007088 (k=0), A007931 (k=2), A032917 (k=3), A032822 (k=4), A276037 (k=5), A284293 (k=6), A276039 (k=7), A284294 (k=9).

Programs

  • Mathematica
    Flatten[Table[FromDigits/@Tuples[{1,8},n],{n,5}]] (* Harvey P. Dale, Aug 27 2014 *)
  • PARI
    is(n) = #setintersect(vecsort(digits(n), , 8), [0, 2, 3, 4, 5, 6, 7, 9])==0 \\ Felix Fröhlich, Sep 09 2019
  • Python
    res = []
    i = 0
    while len (res) < 260:
        for c in str(i):
            if c in '18':
                continue
            else:
                break
        else:
            res.append(i)
        i = i + 1
    print(res)
    
  • Python
    def a(n): return int(bin(n+1)[3:].replace('1', '8').replace('0', '1'))
    print([a(n) for n in range(1, 45)]) # Michael S. Branicky, Jun 26 2025
    

A284294 Numbers using only digits 1 and 9.

Original entry on oeis.org

1, 9, 11, 19, 91, 99, 111, 119, 191, 199, 911, 919, 991, 999, 1111, 1119, 1191, 1199, 1911, 1919, 1991, 1999, 9111, 9119, 9191, 9199, 9911, 9919, 9991, 9999, 11111, 11119, 11191, 11199, 11911, 11919, 11991, 11999, 19111, 19119, 19191, 19199, 19911, 19919
Offset: 1

Views

Author

Jaroslav Krizek, Mar 25 2017

Keywords

Comments

Product of digits of terms is a power of 9; subsequence of A284295.
Prime terms are in A020457.

Crossrefs

Cf. Numbers using only digits 1 and k for k = 0 and k = 2 - 9: A007088 (k = 0), A007931 (k = 2), A032917 (k = 3), A032822 (k = 4) , A276037 (k = 5), A284293 (k = 6), A276039 (k = 7), A213084 (k = 8), this sequence (k = 9).

Programs

  • Magma
    [n: n in [1..20000] | Set(IntegerToSequence(n, 10)) subset {1, 9}];
  • Mathematica
    Join @@ (FromDigits /@ Tuples[{1,9}, #] & /@ Range[5]) (* Giovanni Resta, Mar 25 2017 *)

Formula

The sum of first 2^n terms is (5*20^n + 38*10^n - 95*2^n + 1420)/171. - Giovanni Resta, Mar 25 2017

A284323 Numbers k such that product of digits of k is a power of 4.

Original entry on oeis.org

1, 4, 11, 14, 22, 28, 41, 44, 82, 88, 111, 114, 122, 128, 141, 144, 182, 188, 212, 218, 221, 224, 242, 248, 281, 284, 411, 414, 422, 428, 441, 444, 482, 488, 812, 818, 821, 824, 842, 848, 881, 884, 1111, 1114, 1122, 1128, 1141, 1144, 1182, 1188, 1212, 1218
Offset: 0

Views

Author

Jaroslav Krizek, Mar 25 2017

Keywords

Examples

			1111 is in the sequence because 1*1*1*1 = 1 = 4^0.
		

Crossrefs

Supersequence of A032822.
Cf. Numbers n such that product of digits of n is a power of k for k = 0 - 9: A284375 (k = 0), A002275 (k = 1), A028846 (k = 2), A174813 (k = 3), this sequence (k = 4), A276037 (k = 5), A276038 (k = 6), A276039 (k = 7), A284324 (k = 8), A284295 (k = 9).

Programs

  • Magma
    Set(Sort([n: n in [1..10000], k in [0..20] | &*Intseq(n) eq 4^k]));
  • Mathematica
    FromDigits /@ Select[Join @@ Map[Tuples[2^Range[0, 3], #] &, Range@ 4], IntegerQ@ Log[4, Times @@ #] &] (* Michael De Vlieger, Mar 25 2017 *)

A316315 Numbers k such that the product of digits of k is a power of 12.

Original entry on oeis.org

1, 11, 26, 34, 43, 62, 111, 126, 134, 143, 162, 216, 223, 232, 261, 289, 298, 314, 322, 341, 368, 386, 413, 431, 449, 466, 494, 612, 621, 638, 646, 664, 683, 829, 836, 863, 892, 928, 944, 982, 1111, 1126, 1134, 1143, 1162, 1216, 1223, 1232, 1261, 1289, 1298
Offset: 1

Views

Author

Isaac Weiss and Henry Potts-Rubin, Jun 29 2018

Keywords

Examples

			466 is in the sequence because 4*6*6 = 144 = 12^2.
		

Crossrefs

Programs

  • Mathematica
    FromDigits /@ Select[Join @@ Map[Tuples[{1, 2, 3, 4, 6, 8, 9}, #] &, Range@4], IntegerQ@Log[12, Times @@ #] &]

Extensions

Two duplicate terms removed by Alois P. Heinz, Oct 20 2019
Showing 1-10 of 12 results. Next