A061447 Primitive part of Lucas(n).
1, 3, 4, 7, 11, 6, 29, 47, 19, 41, 199, 46, 521, 281, 31, 2207, 3571, 321, 9349, 2161, 211, 13201, 64079, 2206, 15251, 90481, 5779, 101521, 1149851, 2521, 3010349, 4870847, 9901, 4250681, 64681, 103681, 54018521, 29134601, 67861, 4868641, 370248451
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n=1..1000
- J. Brillhart, P. L. Montgomery and R. D. Silverman, Tables of Fibonacci and Lucas factorizations, Math. Comp. 50 (1988), 251-260, S1-S15. Math. Rev. 89h:11002.
- C. K. Caldwell, Lucas Aurifeuillian primitive part
Programs
-
Mathematica
t={1}; Do[f=LucasL[n]; Do[f=f/GCD[f,t[[d]]], {d,Most[Divisors[n]]}]; AppendTo[t,f], {n,2,100}]; t
Formula
Primitive part of L(n) is primitive part of F(2n).
a(n) = Product_{ d divides 2*n } Fibonacci(2*n/d)^mu(d). - Vladeta Jovovic, Mar 08 2004
Extensions
More terms from Vladeta Jovovic, Mar 08 2004