cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A061445 Composite numbers n such that primitive part of Lucas(n) (see A061447) is prime.

Original entry on oeis.org

9, 10, 14, 15, 16, 20, 21, 26, 27, 30, 33, 36, 38, 49, 56, 62, 66, 68, 70, 72, 76, 78, 80, 86, 90, 91, 110, 117, 120, 121, 136, 140, 144, 164, 168, 172, 178, 202, 207, 220, 261, 284, 328, 354, 357, 420, 423, 458, 459, 468, 480, 504, 513, 530, 586, 606
Offset: 1

Views

Author

David Broadhurst, Jun 10 2001

Keywords

Examples

			16 is a term because A061447(16)=2207 is a prime. - _Sean A. Irvine_, Feb 15 2023
		

Crossrefs

Extensions

Definition corrected by T. D. Noe, Dec 14 2006
Missing a(5)=16 inserted by Sean A. Irvine, Feb 15 2023

A061446 Primitive part of Fibonacci(n).

Original entry on oeis.org

1, 1, 2, 3, 5, 4, 13, 7, 17, 11, 89, 6, 233, 29, 61, 47, 1597, 19, 4181, 41, 421, 199, 28657, 46, 15005, 521, 5777, 281, 514229, 31, 1346269, 2207, 19801, 3571, 141961, 321, 24157817, 9349, 135721, 2161, 165580141, 211, 433494437, 13201, 109441
Offset: 1

Views

Author

David Broadhurst, Jun 10 2001

Keywords

Comments

Fib(n) = A000045(n) = Product_{d|n} a(d), Lucas(n) = A000204(n) = Product_{d|2n and 2^m|d iff 2^m|2n} a(d) (e.g., Lucas(4) = 7 = a(8), Lucas(6) = 18 = a(12)*a(4)). - Len Smiley, Nov 11 2001
A 2001 Iranian Mathematical Olympiad question shows such a sequence exists whenever gcd(a(m),a(n)) = a(gcd(m,n)).
The problem of the characterization of the family of all GCD-morphic sequences F, i.e., F such that GCD(F(m),F(n)) = F(GCD(m,n)), was posed by A. K. Kwasniewski (GCD-morphic Problem). Dziemianczuk and Bajguz (2008) showed that any GCD-morphic sequence is coded by a certain natural number-valued sequence. - Maciej Dziemianczuk, Jan 15 2009
This is the LCM-transform of the Fibonacci numbers (cf. Nowicki). - N. J. A. Sloane, Jan 02 2016

Crossrefs

Cf. A000010 (comments on product formulas).

Programs

  • Maple
    N:= 200; # to get a(1) to a(N)
    L[0]:= 1:
    for i from 1 to N do L[i]:=ilcm(L[i-1],combinat:-fibonacci(i)) od:
    seq(L[i]/L[i-1],i=1..N); # Robert Israel, Aug 03 2015
  • Mathematica
    t={1}; Do[f=Fibonacci[n]; Do[f=f/GCD[f,t[[d]]], {d,Most[Divisors[n]]}]; AppendTo[t,f], {n,2,100}]; t
    (* Second program: *)
    a[n_] := Product[Fibonacci[d]^MoebiusMu[n/d], {d, Divisors[n]}];
    Array[a, 45] (* Jean-François Alcover, Jul 04 2019 *)
  • PARI
    a(n)=my(d=divisors(n)); fibonacci(n)/lcm(apply(fibonacci,d[1..#d-1])) \\ Charles R Greathouse IV, Oct 06 2016

Formula

Let r=(1+sqrt(5))/2. For n>2, the primitive part of F(n)=(r^n-(-1/r)^n)/sqrt(5) is Phi_n(-r^2)/r^phi(n) where Phi_n is n-th cyclotomic polynomial and phi is Euler's totient function A000010.
a(n) = Product_{d|n} Fib(d)^mu(n/d), where mu = A008683 (Bliss, Fulan, Lovett, Sommars, eq. (7)). - Jonathan Sondow, Jun 11 2013
a(n) = lcm(Fib(1),Fib(2),...,Fib(n))/lcm(Fib(1),Fib(2),...,Fib(n-1)). - Thomas Ordowski, Aug 03 2015
a(n) = Product_{k=1..n} Fib(gcd(n,k))^(mu(n/gcd(n,k))/phi(n/gcd(n,k))) = Product_{k=1..n} Fib(n/gcd(n,k))^(mu(gcd(n,k))/phi(n/gcd(n,k))) where mu = A008683, phi = A000010. - Richard L. Ollerton, Nov 08 2021

Extensions

More terms from Vladeta Jovovic, Nov 09 2001
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 29 2007
Edited by Charles R Greathouse IV, Oct 28 2009

A061442 Numbers k such that the Lucas Aurifeuillian primitive part A of Lucas(k) is prime.

Original entry on oeis.org

25, 35, 45, 55, 65, 75, 85, 95, 105, 125, 145, 165, 185, 275, 335, 355, 535, 655, 735, 805, 925, 955, 1095, 1195, 1215, 1275, 1305, 1325, 1435, 1575, 1655, 1765, 2015, 2205, 2715, 2745, 2885, 3905, 3935, 4275, 5705, 5995, 7755, 8565, 11695, 11785, 11825, 11925
Offset: 1

Views

Author

David Broadhurst, Jun 10 2001

Keywords

Comments

The Aurifeullian primitive part A of Lucas(k) only exists when k is a multiple of 5, hence all terms of this sequence are multiples of 5. - Sean A. Irvine, Feb 15 2023

Crossrefs

Extensions

Edited by Arkadiusz Wesolowski, Dec 29 2012

A061254 Odd composite numbers n such that primitive part of Fibonacci(n) (see A061446) is prime.

Original entry on oeis.org

9, 15, 21, 33, 35, 39, 45, 51, 63, 65, 75, 93, 105, 111, 119, 121, 123, 135, 145, 185, 195, 201, 207, 209, 225, 231, 235, 245, 285, 287, 299, 301, 321, 335, 363, 399, 423, 453, 473, 693, 707, 771, 1047, 1113, 1215, 1365, 1371, 1387, 1533, 1537
Offset: 1

Views

Author

David Broadhurst, Jun 10 2001

Keywords

Crossrefs

Programs

  • Mathematica
    A061446[n_] := Product[Fibonacci[d]^MoebiusMu[n/d], {d, Divisors[n]}];
    Select[Range[1, 1999, 2], CompositeQ[#] && PrimeQ[A061446[#]]&] (* Jean-François Alcover, Jul 04 2019 *)

Extensions

Definition corrected by T. D. Noe, Dec 14 2006

A061443 Numbers k such that the Lucas Aurifeuillian primitive part B of Lucas(k) is prime.

Original entry on oeis.org

5, 15, 25, 35, 45, 75, 85, 105, 145, 155, 165, 185, 225, 255, 305, 315, 325, 335, 355, 365, 375, 475, 485, 525, 565, 575, 635, 695, 715, 765, 885, 1235, 1325, 1375, 1515, 2255, 2285, 3085, 3185, 3355, 3565, 3745, 3885, 4325, 4995, 5525, 5915, 6195, 6565, 6975, 6995, 7785, 8855
Offset: 1

Views

Author

David Broadhurst, Jun 10 2001

Keywords

Crossrefs

Extensions

Corrected by T. D. Noe, Dec 17 2006
Edited by Arkadiusz Wesolowski, Dec 29 2012

A126015 Lucas numbers divided by their primitive part.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 4, 3, 1, 7, 1, 3, 44, 1, 1, 18, 1, 7, 116, 3, 1, 47, 11, 3, 76, 7, 1, 738, 1, 1, 796, 3, 319, 322, 1, 3, 2084, 47, 1, 5058, 1, 7, 25916, 3, 1, 2207, 29, 123, 14284, 7, 1, 5778, 2189, 47, 37396, 3, 1, 695842, 1, 3, 465044, 1, 5731, 237618, 1, 7, 256316
Offset: 1

Views

Author

T. D. Noe, Dec 16 2006

Keywords

Comments

Note that a(n)=1 for prime n and for n=2^k for k=0,1,2,...

Crossrefs

Cf. A000032 (Lucas numbers), A105602 (Fibonacci numbers divided by their primitive part).

Formula

a(n)=L(n)/A061447(n)

A190757 Lucas Aurifeuillian primitive part A of Lucas(10*n - 5).

Original entry on oeis.org

1, 1, 101, 71, 181, 39161, 24571, 12301, 1158551, 87382901, 21211, 373270451, 28143378001, 32414581, 1322154751061, 9062194370461, 1550853481, 2819407321151, 265272771839851, 2366632711, 137083914639998701, 85417012034751151, 3455782010101
Offset: 1

Views

Author

Arkadiusz Wesolowski, Dec 29 2012

Keywords

Crossrefs

Programs

  • Mathematica
    lst = {1}; n = 23; Do[f = LucasL[k]; Do[f = f/GCD[f, lst[[d]]], {d, Most@Divisors[k]}]; AppendTo[lst, f], {k, 2, 10*n - 5}]; Table[GCD[lst[[5*k]], 5*Fibonacci[k]*(Fibonacci[k] - 1) + 1], {k, 1, 2*n - 1, 2}]

Formula

a(n) = GCD(A061447(10*n-5), A027941(n-1)*A106729(n-1) + 1).

A190781 Lucas Aurifeuillian primitive part B of Lucas(10*n - 5).

Original entry on oeis.org

11, 31, 151, 911, 541, 3641, 272611, 18451, 12760031, 7947701, 767131, 4106261531, 28144128251, 34379101, 120196353941, 823837075741, 51164521, 4215154433351, 2918000731816531, 73998076231, 12462174208709101, 939587136717207031, 3467131047901
Offset: 1

Views

Author

Arkadiusz Wesolowski, Dec 29 2012

Keywords

Crossrefs

Programs

  • Mathematica
    lst = {1}; n = 23; Do[f = LucasL[k]; Do[f = f/GCD[f, lst[[d]]], {d, Most@Divisors[k]}]; AppendTo[lst, f], {k, 2, 10*n - 5}]; Table[GCD[lst[[5*k]], 5*Fibonacci[k]*(Fibonacci[k] + 1) + 1], {k, 1, 2*n - 1, 2}]

Formula

a(n) = GCD(A061447(10*n-5), A032908(n)*A106729(n-1) + 1).

A121708 Numerator of Sum/Product of first n Fibonacci numbers A000045[n].

Original entry on oeis.org

1, 2, 2, 7, 2, 1, 11, 3, 11, 1, 29, 47, 29, 1, 19, 41, 19, 1, 199, 23, 199, 1, 521, 281, 521, 1, 31, 2207, 31, 1, 3571, 107, 3571, 1, 9349, 2161, 9349, 1, 211, 13201, 211, 1, 64079, 1103, 64079, 1, 15251, 90481, 15251, 1, 5779, 14503, 5779, 1, 1149851, 2521
Offset: 1

Views

Author

Alexander Adamchuk, Aug 16 2006, Sep 21 2006

Keywords

Comments

a(1) = 1 and a(4k+2) = 1 for k>0.
For k >1 a(4k-1) = a(4k+1) = A072183(2k+1) = A061447(2k+1) Primitive part of Lucas(n).

Crossrefs

Programs

  • Mathematica
    Table[Numerator[Sum[Fibonacci[k],{k,1,n}]/Product[Fibonacci[k],{k,1,n}]],{n,1,100}]
    With[{fibs=Fibonacci[Range[60]]},Numerator[Accumulate[fibs]/Rest[ FoldList[ Times,1,fibs]]]] (* This is significantly faster than the first program above *) (* Harvey P. Dale, Aug 19 2012 *)

Formula

a(n) = numerator( sum(k=1..n, Fibonacci(k)) / prod(k=1..n, Fibonacci(k)) ).
Showing 1-9 of 9 results.