cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A061446 Primitive part of Fibonacci(n).

Original entry on oeis.org

1, 1, 2, 3, 5, 4, 13, 7, 17, 11, 89, 6, 233, 29, 61, 47, 1597, 19, 4181, 41, 421, 199, 28657, 46, 15005, 521, 5777, 281, 514229, 31, 1346269, 2207, 19801, 3571, 141961, 321, 24157817, 9349, 135721, 2161, 165580141, 211, 433494437, 13201, 109441
Offset: 1

Views

Author

David Broadhurst, Jun 10 2001

Keywords

Comments

Fib(n) = A000045(n) = Product_{d|n} a(d), Lucas(n) = A000204(n) = Product_{d|2n and 2^m|d iff 2^m|2n} a(d) (e.g., Lucas(4) = 7 = a(8), Lucas(6) = 18 = a(12)*a(4)). - Len Smiley, Nov 11 2001
A 2001 Iranian Mathematical Olympiad question shows such a sequence exists whenever gcd(a(m),a(n)) = a(gcd(m,n)).
The problem of the characterization of the family of all GCD-morphic sequences F, i.e., F such that GCD(F(m),F(n)) = F(GCD(m,n)), was posed by A. K. Kwasniewski (GCD-morphic Problem). Dziemianczuk and Bajguz (2008) showed that any GCD-morphic sequence is coded by a certain natural number-valued sequence. - Maciej Dziemianczuk, Jan 15 2009
This is the LCM-transform of the Fibonacci numbers (cf. Nowicki). - N. J. A. Sloane, Jan 02 2016

Crossrefs

Cf. A000010 (comments on product formulas).

Programs

  • Maple
    N:= 200; # to get a(1) to a(N)
    L[0]:= 1:
    for i from 1 to N do L[i]:=ilcm(L[i-1],combinat:-fibonacci(i)) od:
    seq(L[i]/L[i-1],i=1..N); # Robert Israel, Aug 03 2015
  • Mathematica
    t={1}; Do[f=Fibonacci[n]; Do[f=f/GCD[f,t[[d]]], {d,Most[Divisors[n]]}]; AppendTo[t,f], {n,2,100}]; t
    (* Second program: *)
    a[n_] := Product[Fibonacci[d]^MoebiusMu[n/d], {d, Divisors[n]}];
    Array[a, 45] (* Jean-François Alcover, Jul 04 2019 *)
  • PARI
    a(n)=my(d=divisors(n)); fibonacci(n)/lcm(apply(fibonacci,d[1..#d-1])) \\ Charles R Greathouse IV, Oct 06 2016

Formula

Let r=(1+sqrt(5))/2. For n>2, the primitive part of F(n)=(r^n-(-1/r)^n)/sqrt(5) is Phi_n(-r^2)/r^phi(n) where Phi_n is n-th cyclotomic polynomial and phi is Euler's totient function A000010.
a(n) = Product_{d|n} Fib(d)^mu(n/d), where mu = A008683 (Bliss, Fulan, Lovett, Sommars, eq. (7)). - Jonathan Sondow, Jun 11 2013
a(n) = lcm(Fib(1),Fib(2),...,Fib(n))/lcm(Fib(1),Fib(2),...,Fib(n-1)). - Thomas Ordowski, Aug 03 2015
a(n) = Product_{k=1..n} Fib(gcd(n,k))^(mu(n/gcd(n,k))/phi(n/gcd(n,k))) = Product_{k=1..n} Fib(n/gcd(n,k))^(mu(gcd(n,k))/phi(n/gcd(n,k))) where mu = A008683, phi = A000010. - Richard L. Ollerton, Nov 08 2021

Extensions

More terms from Vladeta Jovovic, Nov 09 2001
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 29 2007
Edited by Charles R Greathouse IV, Oct 28 2009

A061447 Primitive part of Lucas(n).

Original entry on oeis.org

1, 3, 4, 7, 11, 6, 29, 47, 19, 41, 199, 46, 521, 281, 31, 2207, 3571, 321, 9349, 2161, 211, 13201, 64079, 2206, 15251, 90481, 5779, 101521, 1149851, 2521, 3010349, 4870847, 9901, 4250681, 64681, 103681, 54018521, 29134601, 67861, 4868641, 370248451
Offset: 1

Views

Author

David Broadhurst, Jun 10 2001

Keywords

Crossrefs

Programs

  • Mathematica
    t={1}; Do[f=LucasL[n]; Do[f=f/GCD[f,t[[d]]], {d,Most[Divisors[n]]}]; AppendTo[t,f], {n,2,100}]; t

Formula

Primitive part of L(n) is primitive part of F(2n).
a(n) = Product_{ d divides 2*n } Fibonacci(2*n/d)^mu(d). - Vladeta Jovovic, Mar 08 2004

Extensions

More terms from Vladeta Jovovic, Mar 08 2004

A061442 Numbers k such that the Lucas Aurifeuillian primitive part A of Lucas(k) is prime.

Original entry on oeis.org

25, 35, 45, 55, 65, 75, 85, 95, 105, 125, 145, 165, 185, 275, 335, 355, 535, 655, 735, 805, 925, 955, 1095, 1195, 1215, 1275, 1305, 1325, 1435, 1575, 1655, 1765, 2015, 2205, 2715, 2745, 2885, 3905, 3935, 4275, 5705, 5995, 7755, 8565, 11695, 11785, 11825, 11925
Offset: 1

Views

Author

David Broadhurst, Jun 10 2001

Keywords

Comments

The Aurifeullian primitive part A of Lucas(k) only exists when k is a multiple of 5, hence all terms of this sequence are multiples of 5. - Sean A. Irvine, Feb 15 2023

Crossrefs

Extensions

Edited by Arkadiusz Wesolowski, Dec 29 2012

A061443 Numbers k such that the Lucas Aurifeuillian primitive part B of Lucas(k) is prime.

Original entry on oeis.org

5, 15, 25, 35, 45, 75, 85, 105, 145, 155, 165, 185, 225, 255, 305, 315, 325, 335, 355, 365, 375, 475, 485, 525, 565, 575, 635, 695, 715, 765, 885, 1235, 1325, 1375, 1515, 2255, 2285, 3085, 3185, 3355, 3565, 3745, 3885, 4325, 4995, 5525, 5915, 6195, 6565, 6975, 6995, 7785, 8855
Offset: 1

Views

Author

David Broadhurst, Jun 10 2001

Keywords

Crossrefs

Extensions

Corrected by T. D. Noe, Dec 17 2006
Edited by Arkadiusz Wesolowski, Dec 29 2012

A061445 Composite numbers n such that primitive part of Lucas(n) (see A061447) is prime.

Original entry on oeis.org

9, 10, 14, 15, 16, 20, 21, 26, 27, 30, 33, 36, 38, 49, 56, 62, 66, 68, 70, 72, 76, 78, 80, 86, 90, 91, 110, 117, 120, 121, 136, 140, 144, 164, 168, 172, 178, 202, 207, 220, 261, 284, 328, 354, 357, 420, 423, 458, 459, 468, 480, 504, 513, 530, 586, 606
Offset: 1

Views

Author

David Broadhurst, Jun 10 2001

Keywords

Examples

			16 is a term because A061447(16)=2207 is a prime. - _Sean A. Irvine_, Feb 15 2023
		

Crossrefs

Extensions

Definition corrected by T. D. Noe, Dec 14 2006
Missing a(5)=16 inserted by Sean A. Irvine, Feb 15 2023

A274584 Composite numbers n such that primitive part of Fibonacci(n) is prime.

Original entry on oeis.org

4, 8, 9, 10, 14, 15, 16, 18, 20, 21, 22, 26, 28, 30, 32, 33, 34, 35, 38, 39, 40, 42, 45, 51, 52, 54, 60, 62, 63, 65, 66, 72, 74, 75, 76, 82, 93, 94, 98, 105, 106, 111, 112, 119, 121, 122, 123, 124, 132, 135, 136, 140, 142, 144, 145, 152, 156, 158, 160, 172, 180
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jun 29 2016

Keywords

Comments

For every n > 1, A105602(a(n)) > 1.

Crossrefs

Cf. A061446. Supersequence of A061254.

Programs

  • Magma
    lst:=[]; for n in [4..180] do if not IsPrime(n) then d:=Divisors(n); p:=Truncate(&*[Fibonacci(d[i])^MoebiusMu(Truncate(n/d[i])): i in [1..#d]]); if IsPrime(p) then Append(~lst, n); end if; end if; end for; lst;
Showing 1-6 of 6 results.